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Surface kinetics and generation of different terms in a conservative growth equation
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A method based on the kinetics of adatoms on a growing surface under epitaxial growth at low temperature
in (1+1) dimensions is proposed to obtain a closed form of the local growth equation. It can be generalized
to any growth problem where surface morphology is governed by adatom diffusion. The method can be easily
extended to higher dimensions. The kinetic processes contributing to various terms in the growth equation are
identified from the analysis of in-plane and downward hops. In particular, processes corresponding to the term
that breaksh— —h symmetry and the curvature dependent term are discussed. Effects of these terms on the
stable to unstable transition in ¢11) dimension are analyzed. In 21) dimensions, it is shown that an
additional asymmetric term is generated due to the in-plane curvature associated with mound-like structures.
This term is independent of any diffusion barrier differences between in-plane and out-of-plane migration. It is
shown that terms generated in the presence of downward hops are the relevant terms in a growth equation. A
growth equation in closed form is obtained for various growth models introduced to capture most of the
processes in experimental molecular beam epitaxial growth. The effect of dissociation is also considered and is
seen to have a stabilizing effect on growth. It is shown that for uphill current the growth equation approach
fails to describe the growth since a given single equation does not apply over the entire substrate.
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[. INTRODUCTION growth cannot be determined reliably. Simulational studies,
that use physical processes as inputs, can be of help in es-
The growth of a solid phase from vapor has been studietablishing the form of growth equation in a reliable way. In
over many years because of its applications in various fieldghe present paper, we have used computer simulations to
In particular, vapor phase epitaxial growth has influencederify the implications of different forms of growth equation.
many important technological advances. Such growth iSThe application of these results to real life experiments are
known to be far from equilibriuni1,2]. It therefore offers an  discussed in Sec. VI where the experimental conditions such
opportunity to study the nonequilibrium phenomenon in anas flatness of the substrate, uniformity of the flux over the
experimentally controllable environment. Under these condisubstrate, etc.,
tions, on the growing interface, processes such as island foare assumed to be same as corresponding conditions in the
mation, dissociation, and nucleation do not equilibrate, sincgimulation.
they are limited by insufficient mass transport. The resultant Based on the experimental observations and computer
interface described by height functitrgr,t) develops char- simulationg[5,6], it is seen that when relaxation is governed
acteristic correlations on the surface. The study of space timey surface diffusion of adatoms, at least three terms are ex-
evolution of these correlations constitutes a major aspect gfected to contribute to the current: a slope dependent term,
understanding the nonequilibrium behavior of the growth.an asymmetric term breaking— —h symmetry, and a term
The continuum equation approach is used to understand thigoportional to the gradient of curvatuié,7]. The last term
phenomenoifl,2]. This approach helps to obtain the charac-will be henceforth referred as “Mullin’s term['8]. This term
teristic exponentsy, B8, andz. « characterizes the spatial gives rise to a fourth-order term in the growth equation. One
variation of roughness as', the time evolution is given by of the early effortd9] used the “master equation approach”
t#, and the growth of correlation length k§~t*?. Under  also referred as the “microscopic theory,” for the model in-
most of the conditions in experimental growth, evaporationvolving desorption and column diffusion as the relaxation
and the vacancy formation are negligih@ implying vol-  mechanisms for adatoms. This approach yields slope depen-
ume conservation. A conservative growth equation satisfyinglent termsolelydue to the desorption and also the asymmet-
Langevin equatio:h+V -J=F, whered is the current due ric term along with Mullin’s term due to the surface diffu-
to the adatom relaxation on the growing surface Bridthe  sion. The terms are obtained under small slope
average flux with white noise, should describe the time evoapproximation. The behavior at large slopes is not clear. Fur-
lution of the height function. In order to understand thether, it is not possible to establish an unambiguous corre-
growth behavior through continuum equation approach, it ispondence between the kinetic processes, and the terms in
necessary to establish the correspondence between surfabe growth equation by master equation approach. Kinetic
kinetics and the terms appearing in the equation. This correapproach involving Arrhenius model or Burton, Cabrera, and
spondence should corroborate with experimental observérank (BCF) [10] approach, including nucleation and step
tions. Experiments in this field show a great variety of resultsedge barriers, does not yield a closed form for the growth
[1,2]. However, initial surface roughness, impurities in theequation[2]. It does, however, relate the slope dependent
flux, and similar phenomerid] are inputs to the growth that term to diffusion of adatoms on the terrace of a step. Further,
are uncontrolled in nature. Therefore, their influence on thé¢o obtain the asymmetric term a quadratic slope dependence
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for density of adatoms has to be assumed additionally. Both V]
the terms are obtained under small slope approximation. Us- V<A B
ing this form, it is not possible to arrive at any closed form of | |
equation describing growth at higher slopes. The Mullin’s

term is argued to be generated through step detachiBgnt  FiG. 1. A typical step structure formed during growth along
or due to the nucleation, based on dimensional andl@sf$  positive slopev andv’ are velocities of the steps.

This is concurrent with the microscopic theory which at-

tsriltt))rl:t[?ﬁ tSZSi(Sjy(r)nnn}[ﬁtemr:]’]i:r;gsl(\:Aé“lilg tshgv:)rrm gouégg:%?ﬁﬂ'gghmesent method allows a closed form of the growth equation
' P Y. for the DT model and also shows how the rules in the LD

alwayscreates asymmetric and Mullin’s terms. Step detach- del orod i in th h tion that h imil
ment and nucleation are a result of the surface diffusion pro[nO €l produce a term In the growth equation that has simrar

cess, and they produce these terms. Apparently, there apghawor as the Lai—Das Sarma-Villain eql_Jatlon. F_urther,_
several processes that seem to be associated with one YiC€ the process to term correspondence is established, it
more of the growth terms. These processes, however, satisflOWS US to analyze the growth under uphill current, i.e.,
the sufficiency criteria for the existence of these terms. It i¢instable growth. It is shown that continuum equation ap-
not clear , whether some of these processes or new ones deoach fails[17] in such a situation. In Sec. VI, we discuss
necessary for the existence of these terms in the growtfhe relevant results that support the argument of the break-
equation or not. In this sense, the correspondence betwe&®wn of continuum approach.

growth processes and terms in the growth equation has not

been completely established. As has been noted in[Refa

systematic derivation of surface current is lacking. The work Il. EQUATION FOR GROWTH

described in the following sections addresses this problem WITH SURFACE DIFFUSION

and establishes the correspondence at least within the frame- ) ) ) )
work of simple kinetic arguments. Consider growth on a one-dimensional flat substrate with

We consider in-plane and downward hops as the basit@ttice constana. Also assume steps developed as a result of
relaxation mechanism that produce the kinetic processe#jitial growth. We will consider the situation depicted in Fig.
giving rise to terms mentioned above. So far, role of suchl for obtaining various contributions to the current where
hops has not been explicitly considered in most of the worksteps are such that positive slope is obtained. Here, the un-
on growth. Distinctive effects of such hops have been conderlying assumption is that the rough or unstable surface will
sidered in connection with specular spot oscillations in redmainly consist of stepped regions. Adatoms are randomly
flected high energy electron diffraction experimélrits], and  deposited on the substrate. L8t be the diffusion constant
also while considering their effect on time exponghf12]  on the terrace ant} be the average distance that an adatom
in stochastic growth. In the method described in the follow-travels on a terrace before encountering another adatom. De-
ing section, various terms are obtained by considering thé&achment from steps or nuclei on the terrace is assumed to be
current, as affected by geometrical configuration relevant tmegligible. Since the (% 1)-dimensional surface essentially
the relaxation rules. Here, we calculate the particle current igonsists of steps, we consider kinetics of adatoms on and
a heuristic way accounting for the processes generated Bcross the steps. The kinetics is defined through the given set
in-plane and downward hops by adatoms. This approach igf rules for relaxation of adatoms. Different terms in the
less rigorous compared to the previous of&8]. However, growth equation are derived by obtaining the expressions for
it allows association of the terms in the growth equation withparticle current due to the hopping adatoms and step move-
kinetic processes directlifhis isolation of kinetic processes ment. An adatom contributes to the current through the hop-
and their association with the terms in a growth equation isping process, either in the direction of slof@ownhill) or
the main contribution of the proposed methdd. (2+1) opposite to it(uphill). A hop contributes to the current pro-
dimensions, an additional asymmetric term due to the invided the configuration changes between the initial position
plane curvature is obtained. This term has relatively wealand the final one. The relevant configuration is decided by
dependence on the Schwoel®E) barrier[13] encountered the rules of relaxation. In the diffusional relaxation, a hop
by a hopping adatom while crossing a step edge. Furthegontributes to the currerdnly when the number of nearest
based on computer simulations in41) dimensions, curva- neighbors(n,) changes, during hap/Ne further differentiate
ture dependent term is argued to be related tadthenward ~ between the current due to the downward and the in-plane
hopping. hops. Adatoms that are hopping down the descending steps

We apply this method to some of the well studied modelscontribute to the downward currejyf, while those hopping
namely, the Das Sarma—Tamborer{®T) model[14], the on the terrace can get attached to an ascending step and
Wolf-Villain (WV) model [15] designed to understand the contribute to the in-plane currefit. As inferred from Fig. 1,
low temperature molecular beam epita®BE) growth and  the adatoms reaching sifefrom the terrace on its right and
also for a model used by Lai—Das Sarma, the LD m¢#i6]  hopping down the step to the left contribute jtp. Those
to demonstrate the manifestation of Lai—Das Sarma-Villairreaching siteB from the terrace on the left & and hopping
(LDV) equation. For the DT model without noise reduction, to the right toward the ascending step contributg;toThe
closed form of the growth equation is not known, while in net current isj4+j;. These are obtained in a mean field
the LD model, the growth equation is empirically related.approach as follows:
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ja(y=[local density of siteA(B)] neglect this dependence since most of our discussion will be
) aroundP,~Pg. Further, such an asymmetry is significant
X[flux of adatoms approaching\(B)] whenPg>P,, since it will produce uphill current and large

local slopes with shorter terraces. It will be shown that under

these conditions, the continuum equation approach [fafs
From the location of the site& andB in Fig. 1, it is clear Therefore, these probabilities copld be considgred 'indepen—

that the density of sited and B is same as the density of dent ofmwhere the growth equation approach is valid. Sub-

steps (effective step height per unit length along the sub-Stituting expressions for flux, site density in Ed), we ob-

strate. For small slope|m| is the density of uniform steps t@in the slope dependent current

[18]. On an ideal surface, as the slope increases step width .

reduces while step height remains constant. On such a sur- . nlm|F(Pg—Pp)

face, the step yvidth is equal to the single lattice constant for Is= 2(1+ |m|)(|c—1+ Imla1) ' @

|m|=1. The width cannot decrease further. Hence, for slopes

X[ probability for hopping acros#A(B)]. (1)

h idth i : h ion d wherev is the velocity of the step bearing the terrace while
the step width fluctuations, the saturation does not occur gf: s e yelocity of the neighboring step on the higher side.

[m|=1. To account for these fluctuations and appropriately-,. .~ the terrace width is reduced, thereby depleting the

interpolate for large and small slopes, we have chosen thFFux approaching siteA andB. The reduction in flux isbv,
functional dependence of the step densityjraf/(1+|m|), where sv = (v’ —v). Adatoms hopping across upper step as

wherem is the local slope. In the limitm| -0, this density well as those getting attached in plane both contribute to the

approaches zero. However, Elkinani and Villain have showq,elocity of the step. Thus, the velocity« j with the differ-
[19] that a “plane” substrate will actually consist of terraces .\ . that the coefficiemP,(B— P, in exp?ession(Z) is re-

of an average length,, . This will introduce an additional n
small factor in the numerator of the expression for the den_placed by PatPg). Hence, the reduced flux

sity. We will, however, consider the diffusion and deposition
rates such that the lengtB(/F)Y*<I,, [2]. Under this con- = F(PatPg) J [m]
dition after few monolayergMLs) of growth, terraces are Iot+mla=t 21+ |m))(I  H+|mla™h)
shorter thar ., . The above choice of diffusion and deposi-
tion allows us to use the expression for the density of step&orresponding currentill not depend or{Pg— P,), since it
as|m[/(1+|ml). represents the amount of the flux removed from the terrace.
In the absence of nucleation, average lateral flux apThe current is therefore obtained by multiplying the reduced
proaching siteB or A is +nF/2Jm|a”! [2]. ajm| ! is the = amount of flux by density of steps. The relative movement of
average local terrace width andis unit vector in thex  Steps causes increase in the local slope for negative curvature
direction. As|m|—0, flux —c. In real systems, this flux is N positive slope. This shows that the direction of the current
restricted due to the nucleation. The nucleation process wilue to the lost flux is same as uphill current which also tends
restrict the diffusion of adatoms to an average lerigthn a 0 increase the local slop€2]. P, andPg are relative prob-
large terrace. As a result, the effective terrace width does natbPilities so thatP,+Pg=1. Applying these arguments for
increase beyond, when |m|—0. Then, the flux is almost Positive curvature on positive slope, one obtains<v,

constant. The effect of nucleation is incorporated by intro-thereby increasing the terrace size and hence, the lateral flux.
ducing I, in the expression for the flux aélF/Z(IC_l Using the same arguments as above it is seen that the expres-

) S ion for this flux is same as that for the case of reduced flux
+|m|a™?), so that for small slopes the expression is reducet%

to a constant value. L&, andPg represent the probabilities . v as before. Corresponding current is obtained by multiply-

of hopping across sites andB, respectively. The Schwoebel ing the qu>§ by G.DB_.PA) and step density. This current is in
length[20,13 | .= (Pg— P,). In Ref.[19] it is shown that, if the opposite direction compared to the current due to the

there is a large asymmetry between the sticking coefficient%rﬁduced ﬂt').(' ,?\cgpunttrl]ng for this te_ffetct, ths expression for
distribution of diffusing adatoms on the terrace depends upon € current Including the asymmetric term becomes
terrace width. This suggests thag and Pg may depend on -
m for larger asymmetry and shorter terraces. However, wheﬁw(x) B nm|F(Pg—Pa)
P,—0 andPg—1, i.e., the case of large SE barrier, the

| ., the case of la | 21+ |m)(Ig H mja )
nucleation becomes significant since it is proportional to the

adatom density21]. As a result, the asymmetry of the ada- NF[1—(Pg—Pu)] |m|

tom density on the terrace is reduced, rendefpgand Pg + 2 X (1+|m) (1= 2+ [mja 1)
almost independent of the terrace width. Whep=Pg, ¢

there is no asymmetry in the terrace distribution. Under this €)]

condition alsoP, andPg are independent of the width. This
suggests that the said dependence is weak. We will therefota the limit of smallm, the current reduces to
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j(x)=ﬁF(P —P)|m|l /2 current is obtained by multiplying this flux by the step den-
B A ¢ sity. Thus, we find that the current due to the difference in
+ﬁ|:(|§/2)[1_(p8_ PA)]dx(m?). (4) in-plane curvature across consecutive planes is
In particular, the second term is proportional %(Vh)?. VhEac Vh V()]
This term is derived using the BCF theory assuming that at |Vh| Y

small slopes the particle density on the terraces depends on Jeur )
the even powers of local gradie#,6]. Further, in Ref[16]
it was conjectured that such a term can arise due to the dif-, . . . .
ferences in the velocities of the steps near the top and th his term W'” be presenin addltlonto the one, due to _the
bottom of a profile. In the limit of large slopdm|a~* Curvature in the height profile. For small slope conditions
>|_' the second term is proportional to ¢i¥)d,m. This Jour QIVES
expression exactly matches with the one derived for large vh
slopes in referencks]. Thus, the geometrical dependence of V[VhFac’ _h.v) ||
the symmetry breaking term in E¢B) exactly matches with [Vh
the previously derived two terms in the small and large slope ) ) ) )
limits. This shows that the asymmetric term in E8). appro- term in the growth equation. Under scaling transformations,
. . . . . . 4 .

priately interpolates through the limits of small and largethis te4rm givez—4, which is same a¥"h term, but unlike
slopes implying the correct analytical form of the term.  the V"h term, it breaks thér— —h symmetry. This shows

Under the infinite SE barrier, i.eBg=1 andP,=0, the that for_ the growth near tilt m_depende(lTl) current in
asymmetric term becomes zero. From computer simulationé2*1) dimensions mounds grow in time 5%4 The resultant
it is observed that the growth morphology (b+1) dimen- ~ Morphology is such theti— —h symmetry is broken. Thus,
sions is symmetric with respect to the——h transforma- OUr analysis shows that, for an infinite barrier,(int 1) di-
tion, while in (2+1) dimensions it is asymmetrif23,24.  Mensions asymmetric term is zero, while (@+1) dimen-
The structures formed during growth do not grow laterally. [tSIONS |n.—plane curvature gr.adlent.generates asymmetric term.
has been suggesté@s] that asymmetric term does not van- N fact, in almost al(2+1)-dimensional growths, asymmetry
ish for infinite barrier. It, however, decreases faster than th&U€ to this term is unavoidable if 'mound formation occurs.
slope dependent term which dominates to render a symmet- We further argue_that the Mullin’s term must be present in
ric profile in (1+1) dimensions. However, our analysis @y adatom relaxatl_on process that myolves downv_vard hops
shows that in(1+1) dimensions the asymmetric term is ab- aCross the descending step edges. This argument is based on
sent. We show below that i2+1) dimensions the in-plane the observation that, in (31+1)-d|men3|ongl S|mulat|pn., if
curvature gradient generates an additional asymmetric terr@datoms are restricted completely to the in-plane Hoys
This additional term is not sensitive ®, andPg. nite SE barrier then correlations do not grow beyond the

In (2+1) dimensions when mound-like structures arediffusion length. This results in the “wedding cake” type
formed, steps on the mounds haveplane curvature The morpholc_)gy_wnh fixed size of th_e “cakes” .that do not grow
in-plane curvature is given ags(x,y)=[h,h2—2h h.h laterally in time[23,24] as mentioned earlier. On the other
+hy.h2]/(h2+h?)32, where, h, .h Care dé)r(ivyativesxyo? t¥1e hand, when such hops are allowed, correlation length for
heié)r/lt)}unc?ionhy(x );) with r(’as;c()(’ac){ tax andy, respectively. §tal_3|e growth apd mound §ize for unstable growth increases
Consider a region, wherg@) steps form conc’entric arcsj) n pme [1.2]' This observat!on allows one to ponclude that
Pg=P, and(iii) surface diffusion is isotropic . Under such height-height b-h) correlationsincrease only in the pres-

conditionsthe inward flux is proportional to R}, whereR ence of downward hopShe microscopic theor}d] predicts

-1 ; . . fourth-order and asymmetric terms to be present whenever

=|k|~* is the radius of curvature at the point under consid- here is a diff in th ial &the ad

eration. In such a region, the relevant velocity of propagatior;[ ere Is a difference in the potentia e_nergﬂe the a atoryy .
' ' corresponding to its initial and final sites, during a hop. This

of steps is along the radius of curvature. For a mound-like lies a change in the nearest neighbor configurations be-

. e im
structure, the radius decreases as the height increases althgen the two sites. Thus, downward hops produce these
the mound profile resulting into positivecurvature gradient terms and so does tHe in-pl,ane hops. In order to differentiate

_and hence_, a ve_IOCIty gradient, A.S has bee_n explalned earli etween the role of in-plane and downward hops in generat-
in connection with the asymmetric term, this will lead to the .

o : NG . ing these terms, consider a rough surface obtained after
reduction in flux. Since the flux in this case is directly pro- deposition of several monolayers. We consider an in-plane
portional to| x|, the reduction is given by :

hop and a downward hop. L&Y; andW; be the initial and
vh final widths with W= (1/N)=;(h;—h)2. Also let (|l —k|)
V[’ V>|K(x,y)| andG«(|l —k|) be initial and final height-height correlations.
Consider a hop from siteto i +1. The in-plane hop gives
2(1;+a Y vh)|) W,=W;, while downward hop give®V,—W;=2a? for an
initial single step height difference between the sitemd
wherec’ is a constant of proportionality(Vh/|Vh[)-V]is  i+1. Thus, the width is reduced due to the downward hop.
the gradient in the directioWh/|Vh| (I_*+a *m|)"%is  In order to see the effect on-h correlations, we consider
the step width across which the gradient is considered. Theontributions from the relevant participating sites. Thus, con-

T 2(1+|Vh)(I; *+a Y|Vh])

c'Fa
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tribution to G;(|i—j|) will be from sites ath;, h;.4, h;j, study the exclusive effect of asymmetric term. With this view
h;,1, and corresponding reflection sitesiimndi+1. The we have performed simulations of @+ 1)-dimensional
differenceG;(|i—j|) —G¢(]i—j|) due to one set of sites is solid-on-solid model withno diffusion bias(i.e., Po=Pg).

2a2—2a(hj—hj+1). The ensemble average for this processThis will produce growth with Tl current. A fourth-order
will yield 2a? as the difference. Same contribution will ap- equation was earlier proposed by Villdi20] for similar situ-
pear from reflection sites. Thug(|i —j|) is reduced by 42  ation. Under this condition, the first term in E®) vanishes.
by a downward hop. On the other hand, in-plane hop doedhe resultant growth equation in the moving frame with
not changeG(|i—j|), as can be verified by applying the growth front is of the form

same procedure. This shows thiat,order that correlations

grow in time, downward hops are necessafe in-plane J*h ) m 2
hops reduce the deposition noise in a plane. Consider a large dh=— v—rtvady 1 1
flat surface with very small coverage. Every event of an ada- X (1+|mD (T "+ [mla™) 7
tom getting captured by a nucleus or another adatom causes @)
decrease ifG(1). ThevaluesG(1),G(2),...,G(m) for m
atoms forming an island are less than their correspondin
values formisolated atoms. This indicates reduction of noise
in a plane. In fact, this process develops correlations over th
diffusion lengthly. In Ref.[9], it is shown that fourth-order

+ 7,

wherewv, is the appropriate constant for the asymmetry term

4nd 7 is white noise associated with deposition flux with
7(x’',t") p(x,t))=D 8(x’ —x) 5(t" —1). In the limit of small
lopes, renormalization group analysis shows that the rough-

and asymmetric terms are generated whenever nearest nei ess exponent=1, the roughness evolves with the expo-
yr S gel - . - hent3=1/3[16] and growth exponent for correlation length
bor configuration is changed in a hop. This is consistent with

the reduction inG(m), m=I,4 with hops leading to increase 2=3. For large slopes, when terrace width is very st

in near neighbors while attaching to the islands. Thus, in—the order ofa), it is shown in Sec. V that the asymmetric

plane hops do generate fourth-order and asymmetric termterm in Eq.(7) gets modified due to the discretization effect.

however, these exclusively operate withjpreducing depo- The resultant term leads to the scaling exponents1.5,
sition noise in a plane. The processes such as nucleation al d: ?a,llt?s’eanr::dez:f4ﬁoTshéSr;%rlzgt?c?r?C\;{/t;ejig::is[grgm{r%%\]/tlr?e a-
step attachment or detachmq@0,7] are suggested to gen- tion for the DT model in Sec III.A Here, we notegthat in thqe
erate fourth-order term. The above discussion leads to thie . " : ’ .

mit of large slopes Eq(7) will reduce to the equation de-

: I
conclusion that term generated due to these processes W.l‘,"cribing the DT model, hence exponedshould cross over

operate only within the plane and not across different planes. : .
This shows thain a growth equation, terms generated by the%rggr%evjuseolg_olé :-))sct)(ﬁ d3/ 8r;)v:/rt]hﬂr]:oé(()elllot\;lvgt]gmisr‘?](i:é??F]ewre(e—
kinetic processes involving downward hops are the relevanﬁj . ond g .

laxation by surface diffusion. The relaxation rules are con-

terms This also suggest that upward hops wiécreasehe istent with the processes giving rise to different terms in E
correlations. We do not consider in the present work effecti P giving 9-

associated with upward hops, as we restrict the analysis tt6)' These resutlts W'I.I help toWetzﬁtabllsrl_ the Ir eleétlons\r}lp be-
the low temperature growth. From expressi@hand Fig. 1, Ween processterm in a gro equation. In Sec. v, we
downward hops crossing sit will generate downhill cur- apply this method to predict growth equations for other
rent. Hence, if the downward hops are allowed and the Cwmodels.

rent is tilt independent, then it may be expressed as a linear, Cprrespondlng 9“"”?“ gquatlon ('2+.1) dimensions is .
combination of higher derivatives, V3h+a,Voh+ - - - in- obtained from similar kinetic considerations. These consid-

cluding the nonlinear terms of the forR(V2h)2. Here, the erations show that for isottopic diffusion, same form as Eq.
signs of the coefficienta; ,a,, . .. are such that the corre- (6) is obtained by definingi=Vh/|Vh|, replacing Iengtlh-
sponding growth equation describes a stable growth. We willerivative product in asymmetric term b¥h-V/(l

retain onlyV>h in the current corresponding to our minimal *+|Vh|)|Vh|, and adding the asymmetry term due to the
growth equation. Thus, the form of the current correspondin@'(lOlane curvature gradient. For small slopes one obtains

to such an equation ifl+1) dimensions is Vh)? term [16] along with V-[Vh(Vh-V)|«|], which
seems to describe many experimentally observed growth

. nm|F(Pg—P,) roughness measurements from vap®®]. In particular, _in
j(xX)= -1 ) large number of experiments the roughness exponeig
2(1+[mf)(1¢ "+ m[a™) seen to be in the range of 0.65—1.0 which is close to the
- rediction th two terms.
AIM|F(1— Pyt P Im| )2 predictions by these two terms
+ X 1 -
2 (1+m) ¢+ [mla™) IIl. GROWTH MODEL
a°h Growth with surface diffusion and dissociation
+rv—s. 6 , ) )
’ ax3 © This model can be described as follows. Atoms are rained

on a one-dimensional substrate of lengtirandomly with
The first term has been studied widely in the context ofconstant flux. On deposition a given adatom is allowed to
stable growth[26,27] and unstable growth mod&8]. We  hop n times, as in a random walk. The hops can be biased
aim to study TI current models here. This will allow us to through a parametqy. Thus,p= 1.0 is the growth with infi-

011605-5



S. V. GHAISAS PHYSICAL REVIEW E68, 011605 (2003

nite positive SE barrier, whilp=0.0 is with infinite nega- 80060
tive barrier. We assump=1/2, i.e., no bias condition for 80040 | @
most of the cases. If the hopping adatom hgs 2, beforen
hops are exhausted, the adatom is incorporatedhtps are 80020 -
exhausted without encountering any nearest neighbor, it 80000 -
stays permanently at the last position occupied aftbops. =
For a case where a hopping adatom encounigesl, we 79980
define another parametgr The parameteq decides fraction
o . . . 79960 |
of such events, where adatom will dissociate from its neigh-
bor. Forg=0, detachment is completely suppressed. Under 79940 |
this condition detailed balance is not obeyed. As usgas, 79520 . . . .
compared with the random number to decide whether de- 0 200 400 600 800 1000
tachment can take place or not. We have extended the same x
model in(2+1) dimensions. Besides the parametfem=ndq 10000 '
that control the hops across the step edge and away from the b)

edge, respectively, an additional edge diffusion has been in-
cluded[30]. It is considered to be intraplanar process. We
also employ the noise reduction meth¢81] whereever
needed. In this method, after deposition an adatom is allowed _
to make hops as per the rules until it finds the location for the ¥
incorporation. However, instead of actually incorporating the
atom at that position, a counter at that position is increased

1000

100 |

10 |

by unity. A given position is filled only when the counter T

exceeds a certain predecided number. The method has been -

successful in bringing out the correct nature of the growth at 0.1 ] - pro T o a0
earlier times in simulatiof32]. We find that when the num- (MLs)

ber of allowed hops are large enough, noise reduction occurs

in the diffusion process during initial growth. FIG. 2. (a) Morphology of the surface after 80 000 number of
The present model includes the physical processes depelayers. Heighh and distance are measured in lattice unitd) Plot

dent on the surface diffusion. It, however, differs from ki- of width as a function of time. Thicker lines with slope 3/4 and 2/3

netic Monte CarldKMC) method, usually employed in such are drawn for reference. Time is measured in units of number of

simulations. First, the detailed balance is accounted in KMcnenolayersMLs) for a constant flux. The substrate size is 10 000

. . o .. d SE barri teris 0.5 (i.e. SE barri
since dissociation from the steps or nuclei is allowed as pe"?1n arrier parameteris 0.5 (.., no arigr

the activation barrier for that event. The dissociation from
steps is in opposite direction to that of attachment fromBite
in Fig. 1. Fraction of the dissociated atoms will diffuse A. Tl current without dissociation
across the terrace and hop downward. This will constitute
additional downhill current. This current however, isde-
pendent of terrace widthnd depends only on the density of

edges(the details are discussed in Sec. IV Bs aresult, the e growth equation, th*h and the asymmetric term. Pres-
slope dependent uphill current decreases with slope whilg,.o ofv4h term is verified from the flatness of the satu-
dissociation induced downhill current does not. This leads tQteq width for smallL. We have chosem= 10 giving |

Tl current. We will illustrate this effect in the following sec- 3 The saturated width is observed to be flat almost up to
tion. KMC method also allows upward hops and edge diffu-5|  showing thatv*h dominates at small lengtti§]. Fig-

sion. Thus, based on the considerations of contributing curg e 2a) shows the morphology of the interface after 80 000
rents, KMC method would tend to TI current growth rather ;s are grown. As predicted by Eq7), the asymmetry is
than a true uphill current. The present model however, iSgyident in the figure witho=—0.31+0.05. Figure %)
computationally convenient in that, it allows variation of pa- shows plot ofW vs time. We obtain initially3 around 0.33

rameters in such a way that isolation of processes and thejhat attains a value of 0.350.015. Initial value of 0.33

effect on growth equation can be studied. By adjusting pas,5iches well with the predicted one by the E@), in the

rameters in our model, downhill, zero, or uphill current canimit of small slopesicompare data in the region from 10 ML
be maintained during growth simulation. For comparing they, 500 wL in the figure with the line having slope of 2/3).
predictions qf growth .equatlcl)n with S|ml_JIat|ons, we haVeCorrespondinegh—h correlations lead to the roughness ex-
measured widthW, height-height correlation§(r.t) and  ,,nent, that increases from 0.5 to 0.2%.01 over a growth
skewnesso, where W= (1/N)Z(hj—h)?~t# and G(r,t)  of 1C° to 4x 1CP MLs. Clearly,a tends to unity asymptoti-
=(UN)Zp[h(r+r',t)—h(r',)]°. The skewness o cally on large substrates. The value of from saturated
=w3/W®? | wherews=(1/N)Z;(h;—h)® [33]. width and for smalln is 1.35-0.1. These results indicate

IV. RESULTS

From the derivation of expressid@), it is clear that Tl
current is obtained whep=0.5 andq=0, allowing P,
=Pg. Thus, mainly two terms are expected to contribute in
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that most of the morphological features of the growth with

diffusion without detachment are captured by the growth

equation(7). As mentioned in Sec. I, a slow crossover from

B=1/3 to B=3/8 is observed. The exponeatfrom W, is

also close to the predicted value of 113l]. Thus, the model g

in Sec. Il represents the growth equation given by &q. %
1
1

AAY

confirming the association of kinetic processes with the
terms in the growth equation. It also shows that diffusion of
the adatoms roughens the growing surface. Diffusion bias
causes additional effects such as stability or instability of
growth. In particular, if the bias is varied from extreme
negative SE barrier to extreme positive SE barrier, a
stable—unstable transition is observed. In this transition,
however,h— —h symmetry is broken asymptotically. Note 100 ,
that in the stable region, for negative SE barrigiy 2h term (®)
dominates with positive value af, [26], so that asymptoti-
cally asymmetric term becomes irrelevant, renderingO.

At exactly zero SE barrier, finite negative value @fis ob-
tained. In the unstable region with positive SE barrier
o<0. o can be regarded as the symmetry parameters;
that changes abruptly at the transition point. Thus, the§
stable—unstable growth transition for this model with= 0 I
is like second order phase transition. This transition is, how-
ever, a result of not complying with detailed balance.

As mentioned earlier, i(2+1) dimensions, Tl current
growth could not be obtained by puttifty=Pg. We could . . . .
attain a situation close to the Tl current growth by setting the 1 10 100 1000 10000 100000
parameterp to a value 0.54, and without edge diffusion. t(MLs)

Results in Fig. 88) show the morphology, where mound-like
structures are evident, while Fig(t8 shows plot of position
of first maximum inG(x,t) vs time. From Fig. &), we

\) \
RN K R

)

00
00
8
¢ o
99

n G(x,t)

rst

FIG. 3. The growth model with small positive SE barrier but
without edge diffusion. The growth is over 28@00 substrate size

. with SE barrier parametgr= 0.54 showing small positive barrier to
obtain the exponent 2+0.23+ 0.02. We have measuregl compensate for the larger number of configurations, available for

to b(la 0'2|6t O|'03.' zndo-z —1.12-0.1 folr this m?de(;'. Theseh downward hops(a) Morphology of the surface after 2000 number
results clearly Indicate an asymmetric term leading to they layers.(b) Plot of measure of mound size as a function of time.

value of the exponent=4. As has been discussed previ- 11,4 slope obtained is 0.230.02.
ously, it is the term generated from the the curijggt in Eq.

(5), governing the growth dynamics. ] o ] ) ]
rier by assigningp=0.7. In order to simulate the dissocia-

tion effect, we take=0.01. In other words, whenever in the
process of diffusion or after the deposition, an adatom with
Contribution to the current from the process of diSSOCia—Sing|e in_p|ane neighbor is encountered, it is allowed to dis-
tion is obtained as follows. We note that dissociation ofsociate with a probability of 0.01. The dissociated adatom
freSth depOSited adatom will contribute to the nonequi”b'wi” hop on the terrace or downward across the Step depend_
rium current. Thus, the adatoms deposited at the kink sites th on the Subsequent sequence of random hops_ The results
at the bottom of a step with step height more than one are thgre displayed in Figs.(4) and 4b) showing morphology and
potential adatoms contributing to the current. Again the denroughness evolution, respectively. For the sake of compari-
sity of such sites igm|/(1+[m[). The flux in this case is son, plots corresponding tp=0.0 are also included. As seen
c,F, wherec, is the fractional flux of adatoms depositing at from Fig. 4b), the 8 value forq=0.01 is same as the one for
the potential sites. Lepy be the probability of dissociation the growth with zero tilt current within statistical errg.for
leading to a downward hop. Since steps develop in the direqq=0.0 increases to 1/2 showing instability. The argument is
tion of the slope, the dissociation current will be downhill rue for higher dimension as well. However, present model is
current. Thus, a term of the formnc’F|m|/(1+|m|) is ob-  not designed to account the effect of detailed balance. Thus,
tained, wherec’ absorbs all the constants. Expression fora stable condition to maintain the TI current is difficult to
this current shows that it does not decrease withThe achieve in our model. Iif1+1) dimensionsn,=0«n,=1
uphill current due to the positive SE barrier, and/or edgeand n,=1«<n,=1 are the main processes during surface
diffusion is compensated by this current with increasing av-equilibration. Hence, arriving at the TI current is possible in
erage local slopes leading to the zero tilt current. Under thigl+1) dimensions with our model that includes these pro-
condition, the analysis in Sec. IV A applies. To illustrate thiscesses, controlled through parametemndg. In (2+1) di-
point, in our(1+ 1)-dimensional model, we introduce SE bar- mensions, the attachment-detachment processes are many

B. Effect of dissociation

011605-7



S. V. GHAISAS PHYSICAL REVIEW E68, 011605 (2003

50200 . . : .
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< 49800 2000
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49600 | -
49500 | .
49400 . : : .
0 200 400 600 800 1000
X
100000 T T T T
(o)
10000 E
1000 E
g 100 ;
10 E
1 4
01 1 1'0 160 10'00 10600 100000 FIG. 5. Comparison of the results for the {2 )-dimensional
HMLs) growth model, with edge diffusion, no diffusion biag<£0.5), and

dissociation. Parameteg decides the fraction of adatoms with
FIG. 4. Comparison of growth model results, with and without Single neighbor dissociated if encountered during hopgmgvior-
dissociation, in (#1) dimensions. Parameterdecides the frac- phology of the surface after 2000 number of layers with dissocia-
tion of adatoms with single neighbor dissociated if encounteredion (q=0.4). Note the absence of mounds in this cdbgMor-
during hopping(a) Morphology of the surface after 50 000 number phology of the surface after 2000 number of layers without
of layers. Dotted curve represents morphology in the absence dfissociation =0.0). In this case, mounds grow wif= 1/2.

dissociation while solid one is in the presence ofh.Plot of width
as a function of time. The3 value with dissociation is 0.377 V. GROWTH EQUATIONS FOR OTHER MODELS

+0.007, while that without dissociation increases to 1/2. A DT model

. . ) . As mentioned earlier, the present method for obtaining
due to the different possible configurations. Present mod&l,,rent from kinetic considerations appropriately brings out
does not allow all such processes. Thus, exact tilt indepen,qo geometrical dependence in growth equation. We have
dence cannot be attained through the variation of model P3ipplied this method to the DT modg4], proposed to cap-
rameters. Hence, i2+1) dimensions we illustrate the dis- {re the essential features of low temperature MBE. Based on
sociation effect mainly in the form of stable logarithmic nojse reduction technique, the simulations of this m¢ag]
growth. Figures &) and §b) show morphology for the case confirm that(1) exponent3=3/8 with noise reduction factor
with and without dissociation i1f2+1) dimensions, respec- unity, while 8= 1/3 with noise reduction factor of 1(2) the
tively. The effect of dissociation is seen as a stable logarithmorphology is asymmetric witr~ — 0.5, (3) the current is
mic growth compared to the unstable growth with mounding.TI, and (4) a=1.4 and 1.0 with noise reduction factor of
The surface morphology evolves wif=1/2 in the latter unity and 10, respectively2,32]. The relaxation rules for
case. The behavior of2+1)-dimensional model under Tl adatom in this model allow it to hop only when it is depos-
current conditions can be predicted from the form of growthited at siteA or B (see Fig. 1 Also only downward hop is
equation. If the steps are straight, then LDV-type term willallowed if the adatom is deposited Atand hop toward the
dominate giving «=2/3 and B=1/5 [16]. However, if step occurs if it is deposited & If such favorable configu-
mound-like structures are formed, asymmetric term due teations are available on two neighboring sites, then it will
the in-plane curvature gradiefiEq. (5)] will be operative  hop randomly to the left or right. These rules suggest that
leading toz=4 andB=1/4. Siegert and Plisch{&4] have  P,=Pg for this model. The flux approaching sitésor B in
considered a symmetric term to explain the pyramidlikethe present set of rules &/ (a~1+|m|ja™1). For this model,
structures givingg=4 andB=1/4. I.=a since only single hop in definite direction is permitted.
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Further, the flux is affected by relative motion of steps only 10000
when sitesA andB differ by a lattice constant. In E@3), the
velocity gradient is considered over the terrace width'( 1000 |
+a~Ym|) "%, which is smaller tharl.. Since the relative
motion of steps for above set of rules can affect the flux only
for the terrace width of the order of lattice constanor =
lower, for the DT model . =a. As a result of discrete nature ¥
of the substrate, further reduction in the terrace width is not 10 |
possible, this introduces the effect of discretization. Our
model, described in Sec. Il with=1 and the DT model, is
not different in the framework of present analysis. We expect
that equation governing the DT model should be applicable
to our model. In fact, in our model when local slopes in- 0.1
crease in time, the effect of discretization emerges. This ef-
fect manifests as a crossover effect where growth exponents
during initial growth indicate the LDV-type growth while FIG. 6. Plot of width as a function of time for the
later it crosses over to the exponents characterizing the Dy + 1)-dimensional model described in Sec. I1i for different num-
model, as seen in Sec. IV A. Thus, the current in @ywith  per of hopsn. Thicker lines with slope of 3/4 and 2/3 are drawn for
P,=Pg and including the discretization effect becomes  reference as top curve and bottom curve, respectively. In between,
. the curves from top correspond to=1, 10, and 25 number of
#m nFa? m m maximum hops. The substrate size is 10000 and SE barrier param-

Jopr(X)=v—0"+ d . (8) i : -
p( X2 2 1+[m| “(1+ Im|)2 eter is 0.5, i.e., no SE barrier.

100 ¢

1 10 100 1000 10000 100000
t(MLs)

The growth equation corresponding to this current in theis “zero current universality.’.’ It is a degenerate case since
moving frame will be z=3 andz=4 are both po§5|ble for the same model.
In (2+1) dimensions, with above rules for adatom relax-
ation, the local density of site& and B need not be equal
d*h , m m since fluctuations in step edges render configurations that
(9th:_VF+Va(9xl+|m| Ix 1+ |ml >t7 (9 show bias for sitesA or B. As a result, slope dependent
x ( mj) current will dominate the growth changing the universality
class with dimensiong32]. In this case, the noise reduction
wherev, accounts for various constants in the correspondingechnique helps to establish the sign of the current on tilted
expression for the current. The power counting in this equasubstrate. Without noise reduction, the nucleation noise ob-
tion leads taz=4 from the first term and=1+ 2« for large  scures the real sign of the current and hence the universality
slopes corresponding to the second term which is expected tsf the model in(2+1) dimensions. In particular, for the DT
be operative mainly over large local inclinations. The rela-model, it has been shown th§82] configurations favor
tion obtained from the second term is exactly the same as thdownward hops. Thus, in spite of intrinsic randomness in
one obtainable from the noise term Forz=4 all the terms  selecting the neighboring site for a hop, a downhill current is
are marginal. This implies that=4 andB=3/8. The second produced on tilted substrate leading to Edward-Wilkinson
term breaks théh— —h symmetry. Hence, above equation (EW)- [26] type universality.
accounts for all the observed facts mentioned above in the
simulation of the DT model. Since the growth equation for B. WV model
the DT model is obtained in the discretization limit of sur- :
face diffusion model, the surface diffusion model without This model was introduced by Wolf and Villairi5] to
dissociation approaches DT model asymptotically. Figure &imulate low temperature MBE growth. In this model, relax-
shows the plot ofW vs time obtained from oufl+1)-  ation rules require that an adatom will hop to a nearest site if
dimensional model for different values nfAs expected, for n, increases. Thus, for hops from=0—n,=1, the model
n=1, Bis 3/8. Asnincreases, it crosses over to this value atis same as the DT model. However, it allows hops frogn
later time. Thus, these results clearly demonstrate the effeet 1—n,=2 that cause adatoms to dissociate from steps and
of discretization in growth. hop into the surface. Thus it is closer that, WV model will
However, with a large noise reduction factor, the observedollow the DT model equation above. In addition, due to the
behavior of this model corresponds to the LDV-type equatiordissociation, downhill current is produced as has been dis-
[32]. We have seen that the form of growth equation withcussed in Sec. IVB. The current on tilted substrate has
large enough terraces is indeed LDV type, as in&y.The  been measured for this model and is confirmed to be
effect of noise reduction technique is to reduce the nucledownhill [35].
ation noise. In the process, longer terraces are created and In (2+1) dimensions, hops from smaller, to highern,
maintainedduring growth. Thus, discretization limit is never imply edge diffusion. This can compensate the dissociation
reached thereby continuing the LDV-type behavior. In bothinduced downhill current. Das Sarnet al. [32] have ob-
the cases, the current is Tl, so the universality of this modeserved mound formation if2+ 1)-dimensional WV model.
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C. LD Model dissociation is activated, Tl current will redugg In this
This model was introduced by Lai-Das Sarifii#] in study, we have neglected effects of upward hops. These can

connection with the LDV equation. The rules were set basedurther add more scenarigs2]. It has been mentiongd 2]

on the geometric interpretation of the teW(Vh)z Ac- that with in-plane hOpSG cannot exceed the value 1/2. The
cordingly, a zero neighbor adatom follows same rules as deransients in the growth are, however, known to produce
picted for the DT model. If the adatom is deposited at a kinkhigher apparent values @f [2]. Also, upward hops can give
site with a single lateral nearest neighbor, it is allowed toa value as high as 1 fq8 [12].

move to the nearest kink site with smaller step height. Thus, So far, we have focused our discussion in the vicinity of
an upward or downward hop is permitted to satisfy the rulethe Tl current. We can gain a better insight into the growth
The rule suggests that a hop from one kink site to the neighbehavior by applying the above method for the analysis of
boring one is allowed fronmsmaller to larger local slope the growth with uphill current. Above arguments suggest that
Thus, flux in expressiofil) is ¢,F(m/|m|)(dm/ax), where the growth equation that we have obtained is specific to the
¢, is the fraction of the incident fluk, landing at kink sites. ~ Stepped region on the surface. From the kinetics of adatoms
The factorm/|m| ensures proper direction. The probability On top or base terraces, it is clear that the growth equation
for hopping, once the appropriate configuration is attained, i§an be different in these regiof$7]. This will lead to the
unity as per the relaxation rules for the model. From @g.  breakdown of spatial invariance. We argue that regions that
the term in the growth equation due to the kink to kink allow restricted types of kinetics will support fewer terms in

hopping is the growth equation than the ones that allow larger number
of kinetic processes. We will examine the scenari@lift 1)
m|m| am dimensions, however, the argument is easily extended in
Ix CIFM ox (2+1) dimensions. By inspection, we can identify three re-

gions that allow different number of kinetic processds,a
This term is consistent with the requirement of invariancetop terrace, defined between two down going step edggs,
under x— —x. For smallm, it reduces to §/9x?)(oh/ a base region, defined between two up going step edges, and
9x)2. However, this term is expected to contribute mainly for (3) stepped regions, are three distinct regions. On time scales
larger slopes when the steps with terraces of unit length ap<7w_, a stepped region allows downward hops, relative
pearing consecutively are large enough in number. Undestep motion, and in-plane hops. Thus, the growth equation
these conditions, the term reducesag(m/|m|)(9m/dx)).  corresponding to the current in E(G) , including all the
This term under scaling hypothesis>bx andt—b? gives  three terms is valid over this region. The top terrace in the
exponentz— 3. If this term is not renormalized, it leads to absence of nucleation allows downward hops. By symmetry,

the same scaling exponents as given B3/ ¢x?)(doh/dx)?, the current must be TI, so that it will support only Mullin’s
i.e.,z=3, a=1, andB=1/3. term. On the base region, only in-plane hops are possible.

Again by symmetry the current must be TI. In this region
only Poisson-type growth with no apparent term to build the
h-h correlations is allowed. In order that such a description
Our results show that a growth situation where kinetics ofis valid on reasonable time scales, it is necessary that these
adatoms is well defined can be understood using proposeggions maintain their identity over appreciable time. The
methodology for obtaining the growth equation. It is there-corresponding time should be at leas, , which is the
fore perfectly suited for computer models with well defined minimum time for a height fluctuation at a given site. Ac-
relaxation rules. cordingly, if a base region is created locally, then its dwelling
The results indicate that in real MBE growth, within a low time at the given place decides whether it will act as an
temperature range where evaporation is still negligible, onéndependent region or not. In order to get a qualitative idea
can expect different behavior for different materials on aof stability of base regions over time, we have performed
singular surface. The activation barriers for hopping acrossimulations of an isolated base region as depicted in Figs.
an edge(SE barriej, edge diffusion, and dissociation are 7(a) and 7b). We grow few layers allowing dynamics of
expected to be in the ascending order. As the temperatui@atoms as per the growth model described in Sec. Ill and
increases, the corresponding processes are expected to dmmpute the time correlations for height. The correlations are
activated in the same order. Thus, for materials with veryobtained at different values of the model paramegtevhile
small or zero SE barrier, at low temperatures Tl current willkeepingg=0. The width of the base region is of the order of
dictate the morphology evolution. In many cases, it will bediffusion length. The number of hopsare chosen accord-
with z=4 andgB= 1/4. At higher temperature, edge diffusion ingly. We have also employed noise reduction technique to
is activated causing instability. This will lead ®=1/2 as- reduce the nucleation noise. Figurég)and 1b) show typi-
ymptotically. At higher temperatures, dissociation will re- cal development of base region for the parampte0.1 and
duce the uphill current to Tl current. However, this situation0.9, respectively. Figure (@) shows the time correlations
has to compete with the step flow that leads to EW-typeG,(7)=(h(x,0)h(x,7)), for various values of. The base
growth[20]. This scenario is well fitted to the growth of Cu region in real growth can occur in various surrounding con-
[36]. If the SE barrier is high, at low temperature, unstablefigurations. Although stability times of such configuration
growth will appear with3=1/2[37]. At higher temperature, will differ, the trend depicted in Fig. () is observed to
edge diffusion will not change the exponent. But once theapply to them. The nature of these plots shows thathe

VI. DISCUSSION
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6 T T characteristic timer, for the decay depends gnsuch that,
(@ 7, increases witlp, and(b) for p=0.9, 7,—%. Observation
5 g i (b) is important to us. We find that as long p5-0.5 (i.e.,
\ / current is uphil), there is a threshold for the depth of the
. \, base r_egion, beyond which,—oe. For _p=0.9 this happerjs _
for a single-step depth. In such a region, there are no kinetic
< processes that can support growthhelfi correlations in the
3k { , vicinity. Since no correlations can be built in this region, it
i reduces in size. It acts as a discontinuous region with respect
! to the adjoining stepped regions. Corresponding simulations
2 ' under these conditions will always result in the formation of
\ / deep ridges. This discussion suggests that, whene#€r,
1 " L L " L initially, there will be regions on the substrate during growth
180 190 200 210 220 230 240 250 separated by local base regions. However, as long as base
X region decays in time with finite,,, the lateral growth of
7 . , : h-h correlations continues as per the growth equation on
(o) .-" \ stepped region. In this sense, the growth equation is valid
6 S R / - i over the entire substrate. As growth proceeds, deeper base
I I regions will be created by fluctuations. If these base regions
5 A U] do not decay in time, which is always the case when current
/ on tilted substrate is uphill, ridges are formed. Lateral growth
c 4 \‘ | of the regions separated by a ridge is then governed by the
i dynamics of adatoms across the ridge aotl by the growth
equation on the stepped regiohhus, the continuum equa-
8 | tion approach fails to describe the growth in such cases. As a
result, in (1+1) dimensions, the mounds grow ast)nés-
2 ‘ ' ymptotically. In (2+1) dimensions the mound growth is
\ / slower than Inf). Power law dependence in time is observed
1 : : ' : ' only for TI current and downhill current growtfL7].
180 10 200 210 « 20 20 240 250 In Sec. Il, we have discussed growth under infinite SE
barrier. Above proposition of the disconnected substrate un-
0.450 i der uphill current is consistent with the observed symmetric
@ growth for infinite SE barrier if1+1) dimensiong23]. For
0.400 r T 1 the model, growth irf1+1) dimensions with the rules in Sec.
0.350 | e i I, unstable growth occurs for 1:0p>0.5 rendering uphill
current. For such growth according to the previous analysis,
A 0300 the base region supports only Poisson-type growth while the
£ 0050 top region can generate“h/&x“_ term. Therefore, the top
s regions are flat while base regions have sharp ridges break-
V' 0.200 ing h— —h symmetry. However, for infinite SE barrier, i.e.,
for p=1.0, top region cannot generate fourth-order smooth-
0.150 ening term due to the absence of downward hops. Thus, both
0.100 base and top regions support only Poisson growth rendering
0.050 symmetric pattern.

4 5 6 7 8 9 10
{MLs)

FIG. 7. (a) Time development of a base region of width 10 units,

VIlI. CONCLUSION

In conclusion, we have proposed a simple method for
obtaining current in a solid-on-solid growth (@+ 1) dimen-
ons. The resultant growth equation shows that the presence

bounded by single steps of unit height. Figure shows the morphol-SI ) . . . . -
ogy for four layers grown with the parameter=0.1 andn=100 of diffusion alone is responsible for roughening of a singular

for the model described in Sec. Iifb) Time development of the Surface. It induces an asymmetric term in the continuum
base region for ML as iffa), but the model parametgr=0.9 im-  €quation. The velocity gradient of steps on a growing surface
plying large SE barrier. The base region is seen to be stable in thi§ responsible fpr such a term. (2+1) dlmenglons, In-ple}ne
case(c) Plot of time correlation functiofh(0)h(t)) for the growth ~ curvature gradient generates an asymmetric term. This term
over base region depicted {a) and (b). The topmost curve corre- IS responsible for asymmetry in the growth on a two-
sponds to the model parameter valpe 0.9 while curves corre- dimensional substrate with infinite SE barrier. Role of in-
sponding tqp=0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 appear belowplane hops is seen to smoothen out the deposition noise in a
it in the descending order. plane, within diffusion length. The corresponding terms gen-
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erated are operative only within the plane. A curvature deThe method is successfully applied to various models in the
pendent term is seen to arise from downward hops. Study diterature. It provides an insight into the role of kinetics in
zero bias model brings out effects of discretization and viothe growth from vapor. In the DT model, in particular, it
lation of detailed balance. A stablaunstable transition with supports the dimensional dependence of universality class
symmetry breaking results from such a violation. In this con-for growth under DT rules. The continuum equation ap-
text, the present study brings out the effect of dissociation oproach is, however, seen to be restricted to zero or downhill
the asymptotic behavior of growth. In the absence of upwaraurrent on tilted substrates. For uphill current, disjoint re-
hops, dissociation introduces a downhill current. The condigions following different growth equations are obtained.

tion of detailed balance requires dissociation as a part of the
process toward equilibration. Thus, at high enough tempera-
tures, a zero tilt current is expected to dictate the growth
morphology. Considering the processes in a KMC simula- The author acknowledges useful suggestions by Professor
tion, it is conjectured that these simulations are close to TE. Das Sarma, University of Maryland, College Park, Mary-
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