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Surface kinetics and generation of different terms in a conservative growth equation

S. V. Ghaisas
Department of Electronic Science, University of Pune, Pune 411007, India

~Received 9 January 2003; published 28 July 2003!

A method based on the kinetics of adatoms on a growing surface under epitaxial growth at low temperature
in (111) dimensions is proposed to obtain a closed form of the local growth equation. It can be generalized
to any growth problem where surface morphology is governed by adatom diffusion. The method can be easily
extended to higher dimensions. The kinetic processes contributing to various terms in the growth equation are
identified from the analysis of in-plane and downward hops. In particular, processes corresponding to the term
that breaksh→2h symmetry and the curvature dependent term are discussed. Effects of these terms on the
stable to unstable transition in (111) dimension are analyzed. In (211) dimensions, it is shown that an
additional asymmetric term is generated due to the in-plane curvature associated with mound-like structures.
This term is independent of any diffusion barrier differences between in-plane and out-of-plane migration. It is
shown that terms generated in the presence of downward hops are the relevant terms in a growth equation. A
growth equation in closed form is obtained for various growth models introduced to capture most of the
processes in experimental molecular beam epitaxial growth. The effect of dissociation is also considered and is
seen to have a stabilizing effect on growth. It is shown that for uphill current the growth equation approach
fails to describe the growth since a given single equation does not apply over the entire substrate.

DOI: 10.1103/PhysRevE.68.011605 PACS number~s!: 81.15.Aa, 68.55.Ac
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I. INTRODUCTION

The growth of a solid phase from vapor has been stud
over many years because of its applications in various fie
In particular, vapor phase epitaxial growth has influenc
many important technological advances. Such growth
known to be far from equilibrium@1,2#. It therefore offers an
opportunity to study the nonequilibrium phenomenon in
experimentally controllable environment. Under these con
tions, on the growing interface, processes such as island
mation, dissociation, and nucleation do not equilibrate, si
they are limited by insufficient mass transport. The result
interface described by height functionh(r ,t) develops char-
acteristic correlations on the surface. The study of space
evolution of these correlations constitutes a major aspec
understanding the nonequilibrium behavior of the grow
The continuum equation approach is used to understand
phenomenon@1,2#. This approach helps to obtain the chara
teristic exponentsa, b, and z. a characterizes the spatia
variation of roughness asr a, the time evolution is given by
tb, and the growth of correlation length byj;t1/z. Under
most of the conditions in experimental growth, evaporat
and the vacancy formation are negligible@3# implying vol-
ume conservation. A conservative growth equation satisfy
Langevin equation] th1“•J5F, whereJ is the current due
to the adatom relaxation on the growing surface andF is the
average flux with white noise, should describe the time e
lution of the height function. In order to understand t
growth behavior through continuum equation approach, i
necessary to establish the correspondence between su
kinetics and the terms appearing in the equation. This co
spondence should corroborate with experimental obse
tions. Experiments in this field show a great variety of resu
@1,2#. However, initial surface roughness, impurities in t
flux, and similar phenomena@4# are inputs to the growth tha
are uncontrolled in nature. Therefore, their influence on
1063-651X/2003/68~1!/011605~12!/$20.00 68 0116
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growth cannot be determined reliably. Simulational studi
that use physical processes as inputs, can be of help in
tablishing the form of growth equation in a reliable way.
the present paper, we have used computer simulation
verify the implications of different forms of growth equation
The application of these results to real life experiments
discussed in Sec. VI where the experimental conditions s
as flatness of the substrate, uniformity of the flux over
substrate, etc.,
are assumed to be same as corresponding conditions in
simulation.

Based on the experimental observations and comp
simulations@5,6#, it is seen that when relaxation is governe
by surface diffusion of adatoms, at least three terms are
pected to contribute to the current: a slope dependent te
an asymmetric term breakingh→2h symmetry, and a term
proportional to the gradient of curvature@6,7#. The last term
will be henceforth referred as ‘‘Mullin’s term’’@8#. This term
gives rise to a fourth-order term in the growth equation. O
of the early efforts@9# used the ‘‘master equation approach
also referred as the ‘‘microscopic theory,’’ for the model i
volving desorption and column diffusion as the relaxati
mechanisms for adatoms. This approach yields slope de
dent termsolelydue to the desorption and also the asymm
ric term along with Mullin’s term due to the surface diffu
sion. The terms are obtained under small slo
approximation. The behavior at large slopes is not clear. F
ther, it is not possible to establish an unambiguous co
spondence between the kinetic processes, and the term
the growth equation by master equation approach. Kin
approach involving Arrhenius model or Burton, Cabrera, a
Frank ~BCF! @10# approach, including nucleation and ste
edge barriers, does not yield a closed form for the grow
equation@2#. It does, however, relate the slope depend
term to diffusion of adatoms on the terrace of a step. Furt
to obtain the asymmetric term a quadratic slope depende
©2003 The American Physical Society05-1



o
U
o
n’s
t

t-
u-
ion
ch
ro
a

e
ti
t i
s
w
e
n

or
le
m

as
se
c

or
on
re

w
th
t
t

h

ith
s
is

in
a

he

el

e

ai
n
in
d

tion
D
ilar
er,
d, it
e.,
p-
s
ak-

ith
t of
g.
re
un-

will
mly
t
om
De-

o be
ly
and

set
e
for
ve-

op-

-
ion
by

op
st

ane
teps

and

ld

g

S. V. GHAISAS PHYSICAL REVIEW E68, 011605 ~2003!
for density of adatoms has to be assumed additionally. B
the terms are obtained under small slope approximation.
ing this form, it is not possible to arrive at any closed form
equation describing growth at higher slopes. The Mulli
term is argued to be generated through step detachmen@5#
or due to the nucleation, based on dimensional analysis@6,7#.
This is concurrent with the microscopic theory which a
tributes the asymmetric and Mullin’s term to surface diff
sion @9#. Based on the microscopic theory, surface diffus
alwayscreates asymmetric and Mullin’s terms. Step deta
ment and nucleation are a result of the surface diffusion p
cess, and they produce these terms. Apparently, there
several processes that seem to be associated with on
more of the growth terms. These processes, however, sa
the sufficiency criteria for the existence of these terms. I
not clear , whether some of these processes or new one
necessary for the existence of these terms in the gro
equation or not. In this sense, the correspondence betw
growth processes and terms in the growth equation has
been completely established. As has been noted in Ref.@7#, a
systematic derivation of surface current is lacking. The w
described in the following sections addresses this prob
and establishes the correspondence at least within the fra
work of simple kinetic arguments.

We consider in-plane and downward hops as the b
relaxation mechanism that produce the kinetic proces
giving rise to terms mentioned above. So far, role of su
hops has not been explicitly considered in most of the w
on growth. Distinctive effects of such hops have been c
sidered in connection with specular spot oscillations in
flected high energy electron diffraction experiments@11#, and
also while considering their effect on time exponentb @12#
in stochastic growth. In the method described in the follo
ing section, various terms are obtained by considering
current, as affected by geometrical configuration relevan
the relaxation rules. Here, we calculate the particle curren
a heuristic way accounting for the processes generated
in-plane and downward hops by adatoms. This approac
less rigorous compared to the previous ones@2,9#. However,
it allows association of the terms in the growth equation w
kinetic processes directly.This isolation of kinetic processe
and their association with the terms in a growth equation
the main contribution of the proposed method.In (211)
dimensions, an additional asymmetric term due to the
plane curvature is obtained. This term has relatively we
dependence on the Schwoebel~SE! barrier@13# encountered
by a hopping adatom while crossing a step edge. Furt
based on computer simulations in (111) dimensions, curva-
ture dependent term is argued to be related to thedownward
hopping.

We apply this method to some of the well studied mod
namely, the Das Sarma–Tamborenea~DT! model @14#, the
Wolf-Villain ~WV! model @15# designed to understand th
low temperature molecular beam epitaxy~MBE! growth and
also for a model used by Lai–Das Sarma, the LD model@16#
to demonstrate the manifestation of Lai–Das Sarma–Vill
~LDV ! equation. For the DT model without noise reductio
closed form of the growth equation is not known, while
the LD model, the growth equation is empirically relate
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Present method allows a closed form of the growth equa
for the DT model and also shows how the rules in the L
model produce a term in the growth equation that has sim
behavior as the Lai–Das Sarma–Villain equation. Furth
once the process to term correspondence is establishe
allows us to analyze the growth under uphill current, i.
unstable growth. It is shown that continuum equation a
proach fails@17# in such a situation. In Sec. VI, we discus
the relevant results that support the argument of the bre
down of continuum approach.

II. EQUATION FOR GROWTH
WITH SURFACE DIFFUSION

Consider growth on a one-dimensional flat substrate w
lattice constanta. Also assume steps developed as a resul
initial growth. We will consider the situation depicted in Fi
1 for obtaining various contributions to the current whe
steps are such that positive slope is obtained. Here, the
derlying assumption is that the rough or unstable surface
mainly consist of stepped regions. Adatoms are rando
deposited on the substrate. LetDs be the diffusion constan
on the terrace andl c be the average distance that an adat
travels on a terrace before encountering another adatom.
tachment from steps or nuclei on the terrace is assumed t
negligible. Since the (111)-dimensional surface essential
consists of steps, we consider kinetics of adatoms on
across the steps. The kinetics is defined through the given
of rules for relaxation of adatoms. Different terms in th
growth equation are derived by obtaining the expressions
particle current due to the hopping adatoms and step mo
ment. An adatom contributes to the current through the h
ping process, either in the direction of slope~downhill! or
opposite to it~uphill!. A hop contributes to the current pro
vided the configuration changes between the initial posit
and the final one. The relevant configuration is decided
the rules of relaxation. In the diffusional relaxation, a h
contributes to the currentonly when the number of neare
neighbors(nn) changes, during hop. We further differentiate
between the current due to the downward and the in-pl
hops. Adatoms that are hopping down the descending s
contribute to the downward currentj d , while those hopping
on the terrace can get attached to an ascending step
contribute to the in-plane currentj i . As inferred from Fig. 1,
the adatoms reaching siteA from the terrace on its right and
hopping down the step to the left contribute toj d . Those
reaching siteB from the terrace on the left ofB and hopping
to the right toward the ascending step contribute toj i . The
net current isj d1 j i . These are obtained in a mean fie
approach as follows:

FIG. 1. A typical step structure formed during growth alon
positive slope.v andv8 are velocities of the steps.
5-2
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j d( i )5@ local density of siteA~B!#

3@flux of adatoms approachingA~B!#

3@probability for hopping acrossA~B!#. ~1!

From the location of the sitesA andB in Fig. 1, it is clear
that the density of sitesA and B is same as the density o
steps~effective step height per unit length along the su
strate!. For small slope,umu is the density of uniform steps
@18#. On an ideal surface, as the slope increases step w
reduces while step height remains constant. On such a
face, the step width is equal to the single lattice constant
umu51. The width cannot decrease further. Hence, for slo
higher than unity, the width remains constant and the he
increases. Since the number of steps per unit length is s
as the number of step widths per unit length, the step den
saturates forumu>1. However, on a growing surface due
the step width fluctuations, the saturation does not occu
umu51. To account for these fluctuations and appropriat
interpolate for large and small slopes, we have chosen
functional dependence of the step density asumu/(11umu),
wherem is the local slope. In the limitumu→0, this density
approaches zero. However, Elkinani and Villain have sho
@19# that a ‘‘plane’’ substrate will actually consist of terrac
of an average lengthl av . This will introduce an additiona
small factor in the numerator of the expression for the d
sity. We will, however, consider the diffusion and depositi
rates such that the length (Ds /F)1/4, l av @2#. Under this con-
dition after few monolayers~MLs! of growth, terraces are
shorter thanl av . The above choice of diffusion and depos
tion allows us to use the expression for the density of st
as umu/(11umu).

In the absence of nucleation, average lateral flux
proaching siteB or A is 6n̂F/2umua21 @2#. aumu21 is the
average local terrace width andn̂ is unit vector in thex
direction. Asumu→0, flux →`. In real systems, this flux is
restricted due to the nucleation. The nucleation process
restrict the diffusion of adatoms to an average lengthl c on a
large terrace. As a result, the effective terrace width does
increase beyondl c when umu→0. Then, the flux is almos
constant. The effect of nucleation is incorporated by int
ducing l c in the expression for the flux asn̂F/2(l c

21

1umua21), so that for small slopes the expression is redu
to a constant value. LetPA andPB represent the probabilitie
of hopping across sitesA andB, respectively. The Schwoebe
length@20,13# l s}(PB2PA). In Ref. @19# it is shown that, if
there is a large asymmetry between the sticking coefficie
distribution of diffusing adatoms on the terrace depends u
terrace width. This suggests thatPA andPB may depend on
m for larger asymmetry and shorter terraces. However, w
PA→0 and PB→1, i.e., the case of large SE barrier, th
nucleation becomes significant since it is proportional to
adatom density@21#. As a result, the asymmetry of the ad
tom density on the terrace is reduced, renderingPA and PB
almost independent of the terrace width. WhenPA5PB ,
there is no asymmetry in the terrace distribution. Under t
condition also,PA andPB are independent of the width. Thi
suggests that the said dependence is weak. We will there
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neglect this dependence since most of our discussion wil
aroundPA'PB . Further, such an asymmetry is significa
whenPB.PA , since it will produce uphill current and larg
local slopes with shorter terraces. It will be shown that un
these conditions, the continuum equation approach fails@17#.
Therefore, these probabilities could be considered indep
dent ofm where the growth equation approach is valid. Su
stituting expressions for flux, site density in Eq.~1!, we ob-
tain the slope dependent current

j s5
n̂umuF~PB2PA!

2~11umu!~ l c
211umua21!

. ~2!

Next we obtain the asymmetric term by noting that t
flux approaching sitesA and B can be modified due to the
relative motion of the steps. Consider the situation in Fig
wherev is the velocity of the step bearing the terrace wh
v8 is the velocity of the neighboring step on the higher sid
For v8.v the terrace width is reduced, thereby depleting
flux approaching sitesA andB. The reduction in flux isdv,
wheredv5(v82v). Adatoms hopping across upper step
well as those getting attached in plane both contribute to
velocity of the step. Thus, the velocityv} j s with the differ-
ence that the coefficient (PB2PA) in expression~2! is re-
placed by (PA1PB). Hence, the reduced flux

dv5
F~PA1PB!

l c
211umua21

]x

umu

2~11umu!~ l c
211umua21!

.

Corresponding currentwill not depend on(PB2PA), since it
represents the amount of the flux removed from the terra
The current is therefore obtained by multiplying the reduc
amount of flux by density of steps. The relative movement
steps causes increase in the local slope for negative curva
on positive slope. This shows that the direction of the curr
due to the lost flux is same as uphill current which also te
to increase the local slope@22#. PA andPB are relative prob-
abilities so thatPA1PB51. Applying these arguments fo
positive curvature on positive slope, one obtainsv8,v,
thereby increasing the terrace size and hence, the lateral
Using the same arguments as above it is seen that the ex
sion for this flux is same as that for the case of reduced
dv as before. Corresponding current is obtained by multip
ing the flux by (PB2PA) and step density. This current is i
the opposite direction compared to the current due to
reduced flux. Accounting for this effect, the expression
the current including the asymmetric term becomes

j ~x!5
n̂umuF~PB2PA!

2~11umu!~ l c
211umua21!

1
n̂F@12~PB2PA!#

2
]xS umu

~11umu!~ l c
211umua21!

D 2

.

~3!

In the limit of smallm, the current reduces to
5-3
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j ~x!5n̂F~PB2PA!umu l c/2

1n̂F~ l c
2/2!@12~PB2PA!#]x~m2!. ~4!

In particular, the second term is proportional to“(“h)2.
This term is derived using the BCF theory assuming tha
small slopes the particle density on the terraces depend
the even powers of local gradient@2,6#. Further, in Ref.@16#
it was conjectured that such a term can arise due to the
ferences in the velocities of the steps near the top and
bottom of a profile. In the limit of large slope,umua21

@ l c
21 the second term is proportional to (1/m3)]xm. This

expression exactly matches with the one derived for la
slopes in reference@6#. Thus, the geometrical dependence
the symmetry breaking term in Eq.~3! exactly matches with
the previously derived two terms in the small and large slo
limits. This shows that the asymmetric term in Eq.~3! appro-
priately interpolates through the limits of small and lar
slopes implying the correct analytical form of the term.

Under the infinite SE barrier, i.e.,PB51 andPA50, the
asymmetric term becomes zero. From computer simulati
it is observed that the growth morphology in~111! dimen-
sions is symmetric with respect to theh→2h transforma-
tion, while in ~211! dimensions it is asymmetric@23,24#.
The structures formed during growth do not grow laterally
has been suggested@25# that asymmetric term does not va
ish for infinite barrier. It, however, decreases faster than
slope dependent term which dominates to render a sym
ric profile in ~111! dimensions. However, our analys
shows that in~111! dimensions the asymmetric term is a
sent. We show below that in~211! dimensions the in-plane
curvature gradient generates an additional asymmetric te
This additional term is not sensitive toPA andPB .

In ~211! dimensions when mound-like structures a
formed, steps on the mounds havein-plane curvature. The
in-plane curvature is given ask(x,y)5@hxxhy

222hxyhxhy

1hyyhx
2#/(hx

21hy
2)3/2, where, hx ,hy are derivatives of the

height functionh(x,y) with respect tox andy, respectively.
Consider a region where~i! steps form concentric arcs,~ii !
PB>PA and ~iii ! surface diffusion is isotropic . Under suc
conditionsthe inward flux is proportional to R21, whereR
5uku21 is the radius of curvature at the point under cons
eration. In such a region, the relevant velocity of propagat
of steps is along the radius of curvature. For a mound-
structure, the radius decreases as the height increases
the mound profile resulting into apositivecurvature gradient
and hence, a velocity gradient. As has been explained ea
in connection with the asymmetric term, this will lead to t
reduction in flux. Since the flux in this case is directly pr
portional touku, the reduction is given by

c8FaS “h

u“hu
•“ D uk~x,y!u

2~ l c
211a21u“hu!

,

wherec8 is a constant of proportionality,@(¹h/u¹hu)•“# is
the gradient in the direction“h/u“hu ( l c

211a21umu)21 is
the step width across which the gradient is considered.
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current is obtained by multiplying this flux by the step de
sity. Thus, we find that the current due to the difference
in-plane curvature across consecutive planes is

j cur5

“hFac8S “h

u“hu
•“ D uk~x,y!u

2~11u“hu!~ l c
211a21u“hu!

. ~5!

This term will be presentin addition to the one, due to the
curvature in the height profile. For small slope conditio
j cur gives

“•F“hFac8S “h

u“hu
•“ D ukuG

term in the growth equation. Under scaling transformatio
this term givesz24, which is same as“4h term, but unlike
the “

4h term, it breaks theh→2h symmetry. This shows
that for the growth near tilt independent~TI! current in
~211! dimensions mounds grow in time ast1/4. The resultant
morphology is such thath→2h symmetry is broken. Thus
our analysis shows that, for an infinite barrier, in~111! di-
mensions asymmetric term is zero, while in~211! dimen-
sions in-plane curvature gradient generates asymmetric t
In fact, in almost all~211!-dimensional growths, asymmetr
due to this term is unavoidable if mound formation occur

We further argue that the Mullin’s term must be present
any adatom relaxation process that involves downward h
across the descending step edges. This argument is bas
the observation that, in a~111!-dimensional simulation, if
adatoms are restricted completely to the in-plane hops~infi-
nite SE barrier! then correlations do not grow beyond th
diffusion length. This results in the ‘‘wedding cake’’ typ
morphology with fixed size of the ‘‘cakes’’ that do not gro
laterally in time @23,24# as mentioned earlier. On the othe
hand, when such hops are allowed, correlation length
stable growth and mound size for unstable growth increa
in time @12#. This observation allows one to conclude th
height-height (h-h) correlationsincrease only in the pres
ence of downward hops. The microscopic theory@9# predicts
fourth-order and asymmetric terms to be present whene
there is a difference in the potential energies~of the adatom!,
corresponding to its initial and final sites, during a hop. T
implies a change in the nearest neighbor configurations
tween the two sites. Thus, downward hops produce th
terms and so does the in-plane hops. In order to different
between the role of in-plane and downward hops in gene
ing these terms, consider a rough surface obtained a
deposition of several monolayers. We consider an in-pl
hop and a downward hop. LetWi andWf be the initial and
final widths withW5(1/N)( j (hj2h̄)2. Also let Gi(u l 2ku)
andGf(u l 2ku) be initial and final height-height correlations
Consider a hop from sitei to i 11. The in-plane hop gives
Wi5Wf , while downward hop givesWi2Wf52a2 for an
initial single step height difference between the sitesi and
i 11. Thus, the width is reduced due to the downward h
In order to see the effect onh-h correlations, we conside
contributions from the relevant participating sites. Thus, c
5-4
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SURFACE KINETICS AND GENERATION OF . . . PHYSICAL REVIEW E 68, 011605 ~2003!
tribution to Gi(u i 2 j u) will be from sites athi , hi 11 , hj ,
hj 11, and corresponding reflection sites ini and i 11. The
differenceGi(u i 2 j u)2Gf(u i 2 j u) due to one set of sites i
2a222a(hj2hj 11). The ensemble average for this proce
will yield 2a2 as the difference. Same contribution will a
pear from reflection sites. Thus,G(u i 2 j u) is reduced by 4a2

by a downward hop. On the other hand, in-plane hop d
not changeG(u i 2 j u), as can be verified by applying th
same procedure. This shows that,in order that correlations
grow in time, downward hops are necessary. The in-plane
hops reduce the deposition noise in a plane. Consider a l
flat surface with very small coverage. Every event of an a
tom getting captured by a nucleus or another adatom ca
decrease inG(1). ThevaluesG(1),G(2), . . . ,G(m) for m
atoms forming an island are less than their correspond
values form isolated atoms. This indicates reduction of no
in a plane. In fact, this process develops correlations over
diffusion lengthl d . In Ref. @9#, it is shown that fourth-order
and asymmetric terms are generated whenever nearest n
bor configuration is changed in a hop. This is consistent w
the reduction inG(m), m< l d with hops leading to increas
in near neighbors while attaching to the islands. Thus,
plane hops do generate fourth-order and asymmetric te
however, these exclusively operate withinl d reducing depo-
sition noise in a plane. The processes such as nucleation
step attachment or detachment@20,7# are suggested to gen
erate fourth-order term. The above discussion leads to
conclusion that term generated due to these processes
operate only within the plane and not across different plan
This shows thatin a growth equation, terms generated by t
kinetic processes involving downward hops are the relev
terms. This also suggest that upward hops willdecreasethe
correlations. We do not consider in the present work effe
associated with upward hops, as we restrict the analysi
the low temperature growth. From expression~2! and Fig. 1,
downward hops crossing siteA will generate downhill cur-
rent. Hence, if the downward hops are allowed and the c
rent is tilt independent, then it may be expressed as a lin
combination of higher derivatives,a1“

3h1a2“
5h1••• in-

cluding the nonlinear terms of the form“(“3h)2. Here, the
signs of the coefficientsa1 ,a2 , . . . are such that the corre
sponding growth equation describes a stable growth. We
retain only“3h in the current corresponding to our minim
growth equation. Thus, the form of the current correspond
to such an equation in~111! dimensions is

j ~x!5
n̂umuF~PB2PA!

2~11umu!~ l c
211umua21!

1
n̂umuF~12PB1PA!

2
]xS umu

~11umu!~ l c
211umua21!

D 2

1n
]3h

]x3
. ~6!

The first term has been studied widely in the context
stable growth@26,27# and unstable growth mode@28#. We
aim to study TI current models here. This will allow us
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study the exclusive effect of asymmetric term. With this vie
we have performed simulations of a~111!-dimensional
solid-on-solid model withno diffusion bias~i.e., PA5PB).
This will produce growth with TI current. A fourth-orde
equation was earlier proposed by Villain@20# for similar situ-
ation. Under this condition, the first term in Eq.~3! vanishes.
The resultant growth equation in the moving frame w
growth front is of the form

] th52n
]4h

]x4
1na]x

2S m

~11umu!~~ l c
211umua21!

D 2

1h,

~7!

wherena is the appropriate constant for the asymmetry te
and h is white noise associated with deposition flux wi
^h(x8,t8)h(x,t)&5Dd(x82x)d(t82t). In the limit of small
slopes, renormalization group analysis shows that the rou
ness exponenta51, the roughness evolves with the exp
nentb51/3 @16# and growth exponent for correlation leng
z53. For large slopes, when terrace width is very small~of
the order ofa), it is shown in Sec. V that the asymmetr
term in Eq.~7! gets modified due to the discretization effec
The resultant term leads to the scaling exponentsa51.5,
b53/8, andz54. This term describes the DT model@14# in
the absence of noise reduction. We discuss the growth e
tion for the DT model in Sec. III A. Here, we note that in th
limit of large slopes Eq.~7! will reduce to the equation de
scribing the DT model, hence exponentb should cross over
from a value of 1/3 to 3/8. In the following section, w
describe a solid-on-solid growth model that mimics the
laxation by surface diffusion. The relaxation rules are co
sistent with the processes giving rise to different terms in
~6!. These results will help to establish the relationship b
tween process→term in a growth equation. In Sec. V, w
apply this method to predict growth equations for oth
models.

Corresponding growth equation in~211! dimensions is
obtained from similar kinetic considerations. These cons
erations show that for isotropic diffusion, same form as E
~6! is obtained by definingn̂5“h/u“hu, replacing length-
derivative product in asymmetric term by“h•“/( l c

21

1u“hu)u“hu, and adding the asymmetry term due to t
in-plane curvature gradient. For small slopes one obta
“(“h)2 term @16# along with “•@“h(“h•“)uku#, which
seems to describe many experimentally observed gro
roughness measurements from vapor@29#. In particular, in
large number of experiments the roughness exponenta is
seen to be in the range of 0.65–1.0 which is close to
predictions by these two terms.

III. GROWTH MODEL

Growth with surface diffusion and dissociation

This model can be described as follows. Atoms are rain
on a one-dimensional substrate of lengthL randomly with
constant flux. On deposition a given adatom is allowed
hop n times, as in a random walk. The hops can be bia
through a parameterp. Thus,p51.0 is the growth with infi-
5-5
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S. V. GHAISAS PHYSICAL REVIEW E68, 011605 ~2003!
nite positive SE barrier, whilep50.0 is with infinite nega-
tive barrier. We assumep51/2, i.e., no bias condition fo
most of the cases. If the hopping adatom hasnn>2, beforen
hops are exhausted, the adatom is incorporated. Ifn hops are
exhausted without encountering any nearest neighbo
stays permanently at the last position occupied aftern hops.
For a case where a hopping adatom encountersnn51, we
define another parameterq. The parameterq decides fraction
of such events, where adatom will dissociate from its nei
bor. Forq50, detachment is completely suppressed. Un
this condition detailed balance is not obeyed. As usual,q is
compared with the random number to decide whether
tachment can take place or not. We have extended the s
model in~211! dimensions. Besides the parametersp andq
that control the hops across the step edge and away from
edge, respectively, an additional edge diffusion has been
cluded @30#. It is considered to be intraplanar process. W
also employ the noise reduction method@31# whereever
needed. In this method, after deposition an adatom is allo
to make hops as per the rules until it finds the location for
incorporation. However, instead of actually incorporating
atom at that position, a counter at that position is increa
by unity. A given position is filled only when the counte
exceeds a certain predecided number. The method has
successful in bringing out the correct nature of the growth
earlier times in simulation@32#. We find that when the num
ber of allowed hops are large enough, noise reduction oc
in the diffusion process during initial growth.

The present model includes the physical processes de
dent on the surface diffusion. It, however, differs from k
netic Monte Carlo~KMC! method, usually employed in suc
simulations. First, the detailed balance is accounted in K
since dissociation from the steps or nuclei is allowed as
the activation barrier for that event. The dissociation fro
steps is in opposite direction to that of attachment from sitB
in Fig. 1. Fraction of the dissociated atoms will diffus
across the terrace and hop downward. This will constit
additional downhill current. This current however, is,inde-
pendent of terrace widthand depends only on the density
edges~the details are discussed in Sec. IV B!. As a result, the
slope dependent uphill current decreases with slope w
dissociation induced downhill current does not. This leads
TI current. We will illustrate this effect in the following sec
tion. KMC method also allows upward hops and edge dif
sion. Thus, based on the considerations of contributing
rents, KMC method would tend to TI current growth rath
than a true uphill current. The present model however,
computationally convenient in that, it allows variation of p
rameters in such a way that isolation of processes and
effect on growth equation can be studied. By adjusting
rameters in our model, downhill, zero, or uphill current c
be maintained during growth simulation. For comparing
predictions of growth equation with simulations, we ha
measured widthW, height-height correlationsG(r ,t) and
skewnesss, where W5(1/N)( i(hi2h̄)2;t2b and G(r ,t)
5(1/N)( r8@h(r1r 8,t)2h(r 8,t)#2. The skewness s

5w3 /W3/2 , wherew35(1/N)( i(hi2h̄)3 @33#.
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IV. RESULTS

A. TI current without dissociation

From the derivation of expression~6!, it is clear that TI
current is obtained whenp50.5 and q50, allowing PA
5PB . Thus, mainly two terms are expected to contribute
the growth equation, the“4h and the asymmetric term. Pres
ence of“4h term is verified from the flatness of the sat
rated width for smallL. We have chosenn510 giving l c
'3. The saturated width is observed to be flat almost up
5l c , showing that“4h dominates at small lengths@6#. Fig-
ure 2~a! shows the morphology of the interface after 80 0
MLs are grown. As predicted by Eq.~7!, the asymmetry is
evident in the figure withs520.3160.05. Figure 2~b!
shows plot ofW vs time. We obtain initiallyb around 0.33
that attains a value of 0.3560.015. Initial value of 0.33
matches well with the predicted one by the Eq.~7!, in the
limit of small slopes~compare data in the region from 10 M
to 200 ML in the figure with the line having slope of 2/3)
Correspondingly,h-h correlations lead to the roughness e
ponenta that increases from 0.5 to 0.7560.01 over a growth
of 103 to 43106 MLs. Clearly,a tends to unity asymptoti-
cally on large substrates. The value ofa from saturated
width and for smalln is 1.3560.1. These results indicat

FIG. 2. ~a! Morphology of the surface after 80 000 number
layers. Heighth and distancex are measured in lattice units.~b! Plot
of width as a function of time. Thicker lines with slope 3/4 and 2
are drawn for reference. Time is measured in units of numbe
monolayers~MLs! for a constant flux. The substrate size is 10 0
and SE barrier parameterp is 0.5 ~i.e., no SE barrier!.
5-6
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SURFACE KINETICS AND GENERATION OF . . . PHYSICAL REVIEW E 68, 011605 ~2003!
that most of the morphological features of the growth w
diffusion without detachment are captured by the grow
equation~7!. As mentioned in Sec. II, a slow crossover fro
b51/3 to b53/8 is observed. The exponenta from Wsat is
also close to the predicted value of 1.5@14#. Thus, the model
in Sec. III represents the growth equation given by Eq.~7!
confirming the association of kinetic processes with
terms in the growth equation. It also shows that diffusion
the adatoms roughens the growing surface. Diffusion b
causes additional effects such as stability or instability
growth. In particular, if the bias is varied from extrem
negative SE barrier to extreme positive SE barrier,
stable→unstable transition is observed. In this transitio
however,h→2h symmetry is broken asymptotically. Not
that in the stable region, for negative SE barrier,n2“

2h term
dominates with positive value ofn2 @26#, so that asymptoti-
cally asymmetric term becomes irrelevant, renderings50.
At exactly zero SE barrier, finite negative value ofs is ob-
tained. In the unstable region with positive SE barr
s<0. s can be regarded as the symmetry parame
that changes abruptly at the transition point. Thus,
stable→unstable growth transition for this model withq50
is like second order phase transition. This transition is, ho
ever, a result of not complying with detailed balance.

As mentioned earlier, in~211! dimensions, TI current
growth could not be obtained by puttingPA5PB . We could
attain a situation close to the TI current growth by setting
parameterp to a value 0.54, and without edge diffusio
Results in Fig. 3~a! show the morphology, where mound-lik
structures are evident, while Fig. 3~b! shows plot of position
of first maximum in G(x,t) vs time. From Fig. 3~b!, we
obtain the exponent 1/z50.2360.02. We have measuredb
to be 0.2660.03 ands521.1260.1 for this model. These
results clearly indicate an asymmetric term leading to
value of the exponentz54. As has been discussed prev
ously, it is the term generated from the the currentj cur in Eq.
~5!, governing the growth dynamics.

B. Effect of dissociation

Contribution to the current from the process of dissoc
tion is obtained as follows. We note that dissociation
freshly deposited adatom will contribute to the nonequil
rium current. Thus, the adatoms deposited at the kink site
at the bottom of a step with step height more than one are
potential adatoms contributing to the current. Again the d
sity of such sites isumu/(11umu). The flux in this case is
c2F, wherec2 is the fractional flux of adatoms depositing
the potential sites. Letpd be the probability of dissociation
leading to a downward hop. Since steps develop in the di
tion of the slope, the dissociation current will be downh
current. Thus, a term of the form2n̂c8Fumu/(11umu) is ob-
tained, wherec8 absorbs all the constants. Expression
this current shows that it does not decrease withm. The
uphill current due to the positive SE barrier, and/or ed
diffusion is compensated by this current with increasing
erage local slopes leading to the zero tilt current. Under
condition, the analysis in Sec. IV A applies. To illustrate th
point, in our~111!-dimensional model, we introduce SE ba
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rier by assigningp50.7. In order to simulate the dissocia
tion effect, we takeq50.01. In other words, whenever in th
process of diffusion or after the deposition, an adatom w
single in-plane neighbor is encountered, it is allowed to d
sociate with a probability of 0.01. The dissociated adat
will hop on the terrace or downward across the step depe
ing on the subsequent sequence of random hops. The re
are displayed in Figs. 4~a! and 4~b! showing morphology and
roughness evolution, respectively. For the sake of comp
son, plots corresponding toq50.0 are also included. As see
from Fig. 4~b!, theb value forq50.01 is same as the one fo
the growth with zero tilt current within statistical error.b for
q50.0 increases to 1/2 showing instability. The argumen
true for higher dimension as well. However, present mode
not designed to account the effect of detailed balance. T
a stable condition to maintain the TI current is difficult
achieve in our model. In~111! dimensions,nn50↔nn51
and nn51↔nn51 are the main processes during surfa
equilibration. Hence, arriving at the TI current is possible
~111! dimensions with our model that includes these p
cesses, controlled through parametersp andq. In ~211! di-
mensions, the attachment-detachment processes are

FIG. 3. The growth model with small positive SE barrier b
without edge diffusion. The growth is over 2003200 substrate size
with SE barrier parameterp50.54 showing small positive barrier to
compensate for the larger number of configurations, available
downward hops.~a! Morphology of the surface after 2000 numb
of layers.~b! Plot of measure of mound size as a function of tim
The slope obtained is 0.2360.02.
5-7
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S. V. GHAISAS PHYSICAL REVIEW E68, 011605 ~2003!
due to the different possible configurations. Present mo
does not allow all such processes. Thus, exact tilt indep
dence cannot be attained through the variation of model
rameters. Hence, in~211! dimensions we illustrate the dis
sociation effect mainly in the form of stable logarithm
growth. Figures 5~a! and 5~b! show morphology for the cas
with and without dissociation in~211! dimensions, respec
tively. The effect of dissociation is seen as a stable logar
mic growth compared to the unstable growth with moundi
The surface morphology evolves withb51/2 in the latter
case. The behavior of~211!-dimensional model under T
current conditions can be predicted from the form of grow
equation. If the steps are straight, then LDV-type term w
dominate giving a52/3 and b51/5 @16#. However, if
mound-like structures are formed, asymmetric term due
the in-plane curvature gradient@Eq. ~5!# will be operative
leading toz54 andb51/4. Siegert and Plischke@34# have
considered a symmetric term to explain the pyramidl
structures givingz54 andb51/4.

FIG. 4. Comparison of growth model results, with and witho
dissociation, in (111) dimensions. Parameterq decides the frac-
tion of adatoms with single neighbor dissociated if encounte
during hopping.~a! Morphology of the surface after 50 000 numb
of layers. Dotted curve represents morphology in the absenc
dissociation while solid one is in the presence of it.~b! Plot of width
as a function of time. Theb value with dissociation is 0.377
60.007, while that without dissociation increases to 1/2.
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V. GROWTH EQUATIONS FOR OTHER MODELS

A. DT model

As mentioned earlier, the present method for obtain
current from kinetic considerations appropriately brings o
the geometrical dependence in growth equation. We h
applied this method to the DT model@14#, proposed to cap-
ture the essential features of low temperature MBE. Based
noise reduction technique, the simulations of this model@32#
confirm that~1! exponentb53/8 with noise reduction facto
unity, whileb51/3 with noise reduction factor of 10,~2! the
morphology is asymmetric withs'20.5, ~3! the current is
TI, and ~4! a51.4 and 1.0 with noise reduction factor o
unity and 10, respectively@2,32#. The relaxation rules for
adatom in this model allow it to hop only when it is depo
ited at siteA or B ~see Fig. 1!. Also only downward hop is
allowed if the adatom is deposited atA and hop toward the
step occurs if it is deposited atB. If such favorable configu-
rations are available on two neighboring sites, then it w
hop randomly to the left or right. These rules suggest t
PA5PB for this model. The flux approaching sitesA or B in
the present set of rules isF/(a211umua21). For this model,
l c5a since only single hop in definite direction is permitte

t

d

of

FIG. 5. Comparison of the results for the (211)-dimensional
growth model, with edge diffusion, no diffusion bias (p50.5), and
dissociation. Parameterq decides the fraction of adatoms wit
single neighbor dissociated if encountered during hopping.~a! Mor-
phology of the surface after 2000 number of layers with dissoc
tion (q50.4). Note the absence of mounds in this case.~b! Mor-
phology of the surface after 2000 number of layers witho
dissociation (q50.0). In this case, mounds grow withb51/2.
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SURFACE KINETICS AND GENERATION OF . . . PHYSICAL REVIEW E 68, 011605 ~2003!
Further, the flux is affected by relative motion of steps on
when sitesA andB differ by a lattice constant. In Eq.~3!, the
velocity gradient is considered over the terrace width (l c

21

1a21umu)21, which is smaller thanl c . Since the relative
motion of steps for above set of rules can affect the flux o
for the terrace width of the order of lattice constanta or
lower, for the DT modell c5a. As a result of discrete natur
of the substrate, further reduction in the terrace width is
possible, this introduces the effect of discretization. O
model, described in Sec. III withn51 and the DT model, is
not different in the framework of present analysis. We exp
that equation governing the DT model should be applica
to our model. In fact, in our model when local slopes
crease in time, the effect of discretization emerges. This
fect manifests as a crossover effect where growth expon
during initial growth indicate the LDV-type growth while
later it crosses over to the exponents characterizing the
model, as seen in Sec. IV A. Thus, the current in Eq.~6! with
PA5PB and including the discretization effect becomes

JDT~x!5n
]2m

]x2
1

n̂Fa2

2

m

11umu
]x

m

~11umu!2
. ~8!

The growth equation corresponding to this current in
moving frame will be

] th52n
]4h

]x4
1na8]x

m

11umu
]x

m

~11umu!2
1h, ~9!

wherena8 accounts for various constants in the correspond
expression for the current. The power counting in this eq
tion leads toz54 from the first term andz5112a for large
slopes corresponding to the second term which is expecte
be operative mainly over large local inclinations. The re
tion obtained from the second term is exactly the same as
one obtainable from the noise termh. For z54 all the terms
are marginal. This implies thatz54 andb53/8. The second
term breaks theh→2h symmetry. Hence, above equatio
accounts for all the observed facts mentioned above in
simulation of the DT model. Since the growth equation
the DT model is obtained in the discretization limit of su
face diffusion model, the surface diffusion model witho
dissociation approaches DT model asymptotically. Figur
shows the plot ofW vs time obtained from our~111!-
dimensional model for different values ofn. As expected, for
n51, b is 3/8. Asn increases, it crosses over to this value
later time. Thus, these results clearly demonstrate the e
of discretization in growth.

However, with a large noise reduction factor, the obser
behavior of this model corresponds to the LDV-type equat
@32#. We have seen that the form of growth equation w
large enough terraces is indeed LDV type, as in Eq.~7!. The
effect of noise reduction technique is to reduce the nu
ation noise. In the process, longer terraces are created
maintainedduring growth. Thus, discretization limit is neve
reached thereby continuing the LDV-type behavior. In bo
the cases, the current is TI, so the universality of this mo
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is ‘‘zero current universality.’’ It is a degenerate case sin
z53 andz54 are both possible for the same model.

In ~211! dimensions, with above rules for adatom rela
ation, the local density of sitesA and B need not be equa
since fluctuations in step edges render configurations
show bias for sitesA or B. As a result, slope dependen
current will dominate the growth changing the universal
class with dimensions@32#. In this case, the noise reductio
technique helps to establish the sign of the current on ti
substrate. Without noise reduction, the nucleation noise
scures the real sign of the current and hence the univers
of the model in~211! dimensions. In particular, for the DT
model, it has been shown that@32# configurations favor
downward hops. Thus, in spite of intrinsic randomness
selecting the neighboring site for a hop, a downhill curren
produced on tilted substrate leading to Edward-Wilkins
~EW!- @26# type universality.

B. WV model

This model was introduced by Wolf and Villain@15# to
simulate low temperature MBE growth. In this model, rela
ation rules require that an adatom will hop to a nearest sit
nn increases. Thus, for hops fromnn50→nn51, the model
is same as the DT model. However, it allows hops fromnn
51→nn52 that cause adatoms to dissociate from steps
hop into the surface. Thus it is closer that, WV model w
follow the DT model equation above. In addition, due to t
dissociation, downhill current is produced as has been
cussed in Sec. IV B. The current on tilted substrate
been measured for this model and is confirmed to
downhill @35#.

In ~211! dimensions, hops from smallernn to highernn
imply edge diffusion. This can compensate the dissociat
induced downhill current. Das Sarmaet al. @32# have ob-
served mound formation in~211!-dimensional WV model.

FIG. 6. Plot of width as a function of time for the
(111)-dimensional model described in Sec. III for different num
ber of hopsn. Thicker lines with slope of 3/4 and 2/3 are drawn f
reference as top curve and bottom curve, respectively. In betw
the curves from top correspond ton51, 10, and 25 number o
maximum hops. The substrate size is 10000 and SE barrier pa
eter is 0.5, i.e., no SE barrier.
5-9



se

d
in
t
u
le

ig

ty
,

nk

c

fo
a
d

o

o
s

re
ed

w
on

a
os
re
tu
to
er
i

be
n

e-
on
p
u
bl
,
th

can

e
ce

of
th
of

hat
the
oms
tion

that
in
ber

in
e-

,
, and
ales
ive
tion

the
try,
s
ble.
n

he
ion
ese

he

c-
ng
an
ea
ed
igs.
f
and
are

of
-

to

s

n-
n
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C. LD Model

This model was introduced by Lai–Das Sarma@16# in
connection with the LDV equation. The rules were set ba
on the geometric interpretation of the term¹2(“h)2. Ac-
cordingly, a zero neighbor adatom follows same rules as
picted for the DT model. If the adatom is deposited at a k
site with a single lateral nearest neighbor, it is allowed
move to the nearest kink site with smaller step height. Th
an upward or downward hop is permitted to satisfy the ru
The rule suggests that a hop from one kink site to the ne
boring one is allowed fromsmaller to larger local slope.
Thus, flux in expression~1! is clF(m/umu)(]m/]x), where
cl is the fraction of the incident fluxF, landing at kink sites.
The factorm/umu ensures proper direction. The probabili
for hopping, once the appropriate configuration is attained
unity as per the relaxation rules for the model. From Eq.~1!,
the term in the growth equation due to the kink to ki
hopping is

]xS clF
mumu

umu~11umu!
]m

]x D .

This term is consistent with the requirement of invarian
under x→2x. For small m, it reduces to (]2/]x2)(]h/
]x)2. However, this term is expected to contribute mainly
larger slopes when the steps with terraces of unit length
pearing consecutively are large enough in number. Un
these conditions, the term reduces to]x„(m/umu)(]m/]x)….
This term under scaling hypothesis,x→bx andt→bzt gives
exponentz23. If this term is not renormalized, it leads t
the same scaling exponents as given by (]2/]x2)(]h/]x)2,
i.e., z53, a51, andb51/3.

VI. DISCUSSION

Our results show that a growth situation where kinetics
adatoms is well defined can be understood using propo
methodology for obtaining the growth equation. It is the
fore perfectly suited for computer models with well defin
relaxation rules.

The results indicate that in real MBE growth, within a lo
temperature range where evaporation is still negligible,
can expect different behavior for different materials on
singular surface. The activation barriers for hopping acr
an edge~SE barrier!, edge diffusion, and dissociation a
expected to be in the ascending order. As the tempera
increases, the corresponding processes are expected
activated in the same order. Thus, for materials with v
small or zero SE barrier, at low temperatures TI current w
dictate the morphology evolution. In many cases, it will
with z54 andb51/4. At higher temperature, edge diffusio
is activated causing instability. This will lead tob51/2 as-
ymptotically. At higher temperatures, dissociation will r
duce the uphill current to TI current. However, this situati
has to compete with the step flow that leads to EW-ty
growth @20#. This scenario is well fitted to the growth of C
@36#. If the SE barrier is high, at low temperature, unsta
growth will appear withb51/2 @37#. At higher temperature
edge diffusion will not change the exponent. But once
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dissociation is activated, TI current will reduceb. In this
study, we have neglected effects of upward hops. These
further add more scenarios@12#. It has been mentioned@12#
that with in-plane hops,b cannot exceed the value 1/2. Th
transients in the growth are, however, known to produ
higher apparent values ofb @2#. Also, upward hops can give
a value as high as 1 forb @12#.

So far, we have focused our discussion in the vicinity
the TI current. We can gain a better insight into the grow
behavior by applying the above method for the analysis
the growth with uphill current. Above arguments suggest t
the growth equation that we have obtained is specific to
stepped region on the surface. From the kinetics of adat
on top or base terraces, it is clear that the growth equa
can be different in these regions@17#. This will lead to the
breakdown of spatial invariance. We argue that regions
allow restricted types of kinetics will support fewer terms
the growth equation than the ones that allow larger num
of kinetic processes. We will examine the scenario in~111!
dimensions, however, the argument is easily extended
~211! dimensions. By inspection, we can identify three r
gions that allow different number of kinetic processes,~1! a
top terrace, defined between two down going step edges~2!
a base region, defined between two up going step edges
~3! stepped regions, are three distinct regions. On time sc
!tML , a stepped region allows downward hops, relat
step motion, and in-plane hops. Thus, the growth equa
corresponding to the current in Eq.~6! , including all the
three terms is valid over this region. The top terrace in
absence of nucleation allows downward hops. By symme
the current must be TI, so that it will support only Mullin’
term. On the base region, only in-plane hops are possi
Again by symmetry the current must be TI. In this regio
only Poisson-type growth with no apparent term to build t
h-h correlations is allowed. In order that such a descript
is valid on reasonable time scales, it is necessary that th
regions maintain their identity over appreciable time. T
corresponding time should be at leasttML , which is the
minimum time for a height fluctuation at a given site. A
cordingly, if a base region is created locally, then its dwelli
time at the given place decides whether it will act as
independent region or not. In order to get a qualitative id
of stability of base regions over time, we have perform
simulations of an isolated base region as depicted in F
7~a! and 7~b!. We grow few layers allowing dynamics o
adatoms as per the growth model described in Sec. III
compute the time correlations for height. The correlations
obtained at different values of the model parameterp while
keepingq50. The width of the base region is of the order
diffusion length. The number of hopsn are chosen accord
ingly. We have also employed noise reduction technique
reduce the nucleation noise. Figures 7~a! and 7~b! show typi-
cal development of base region for the parameterp50.1 and
0.9, respectively. Figure 7~c! shows the time correlation
Gt(t)5^h(x,0)h(x,t)&, for various values ofp. The base
region in real growth can occur in various surrounding co
figurations. Although stability times of such configuratio
will differ, the trend depicted in Fig. 7~c! is observed to
apply to them. The nature of these plots shows that~a! the
5-10
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FIG. 7. ~a! Time development of a base region of width 10 uni
bounded by single steps of unit height. Figure shows the morp
ogy for four layers grown with the parameterp50.1 andn5100
for the model described in Sec. III.~b! Time development of the
base region for ML as in~a!, but the model parameterp50.9 im-
plying large SE barrier. The base region is seen to be stable in
case.~c! Plot of time correlation function̂h(0)h(t)& for the growth
over base region depicted in~a! and ~b!. The topmost curve corre
sponds to the model parameter valuep50.9 while curves corre-
sponding top50.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 appear be
it in the descending order.
01160
characteristic timetb for the decay depends onp such that,
tb increases withp, and~b! for p50.9, tb→`. Observation
~b! is important to us. We find that as long asp.0.5 ~i.e.,
current is uphill!, there is a threshold for the depth of th
base region, beyond whichtb→`. For p50.9 this happens
for a single-step depth. In such a region, there are no kin
processes that can support growth ofh-h correlations in the
vicinity. Since no correlations can be built in this region,
reduces in size. It acts as a discontinuous region with res
to the adjoining stepped regions. Corresponding simulati
under these conditions will always result in the formation
deep ridges. This discussion suggests that, wheneverpÞ0,
initially, there will be regions on the substrate during grow
separated by local base regions. However, as long as
region decays in time with finitetb , the lateral growth of
h-h correlations continues as per the growth equation
stepped region. In this sense, the growth equation is v
over the entire substrate. As growth proceeds, deeper
regions will be created by fluctuations. If these base regi
do not decay in time, which is always the case when curr
on tilted substrate is uphill, ridges are formed. Lateral grow
of the regions separated by a ridge is then governed by
dynamics of adatoms across the ridge andnot by the growth
equation on the stepped region. Thus, the continuum equa
tion approach fails to describe the growth in such cases. A
result, in ~111! dimensions, the mounds grow as ln(t) as-
ymptotically. In ~211! dimensions the mound growth i
slower than ln(t). Power law dependence in time is observ
only for TI current and downhill current growth@17#.

In Sec. II, we have discussed growth under infinite
barrier. Above proposition of the disconnected substrate
der uphill current is consistent with the observed symme
growth for infinite SE barrier in~111! dimensions@23#. For
the model, growth in~111! dimensions with the rules in Sec
III, unstable growth occurs for 1.0.p.0.5 rendering uphill
current. For such growth according to the previous analy
the base region supports only Poisson-type growth while
top region can generate]4h/]x4 term. Therefore, the top
regions are flat while base regions have sharp ridges br
ing h→2h symmetry. However, for infinite SE barrier, i.e
for p51.0, top region cannot generate fourth-order smoo
ening term due to the absence of downward hops. Thus,
base and top regions support only Poisson growth rende
symmetric pattern.

VII. CONCLUSION

In conclusion, we have proposed a simple method
obtaining current in a solid-on-solid growth in~111! dimen-
sions. The resultant growth equation shows that the prese
of diffusion alone is responsible for roughening of a singu
surface. It induces an asymmetric term in the continu
equation. The velocity gradient of steps on a growing surf
is responsible for such a term. In~211! dimensions, in-plane
curvature gradient generates an asymmetric term. This t
is responsible for asymmetry in the growth on a tw
dimensional substrate with infinite SE barrier. Role of i
plane hops is seen to smoothen out the deposition noise
plane, within diffusion length. The corresponding terms ge

,
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5-11



de
y
io

n
o

ar
d
th

er
t

la
T
n

the
in
it
lass
p-
hill

re-

ssor
ry-

S. V. GHAISAS PHYSICAL REVIEW E68, 011605 ~2003!
erated are operative only within the plane. A curvature
pendent term is seen to arise from downward hops. Stud
zero bias model brings out effects of discretization and v
lation of detailed balance. A stable→unstable transition with
symmetry breaking results from such a violation. In this co
text, the present study brings out the effect of dissociation
the asymptotic behavior of growth. In the absence of upw
hops, dissociation introduces a downhill current. The con
tion of detailed balance requires dissociation as a part of
process toward equilibration. Thus, at high enough temp
tures, a zero tilt current is expected to dictate the grow
morphology. Considering the processes in a KMC simu
tion, it is conjectured that these simulations are close to
current even when SE barriers are included in simulatio
,

.

s.

,

n
.

c

e

01160
-
of
-

-
n
d
i-
e

a-
h
-
I

s.

The method is successfully applied to various models in
literature. It provides an insight into the role of kinetics
the growth from vapor. In the DT model, in particular,
supports the dimensional dependence of universality c
for growth under DT rules. The continuum equation a
proach is, however, seen to be restricted to zero or down
current on tilted substrates. For uphill current, disjoint
gions following different growth equations are obtained.
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